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ABSTRACT

With the rapid development of hardware equipments, it is now

economically and technically feasible to build a video surveil-

lance system. This paper presents the system architecture of

VISS, a Video Intelligent Surveillance System deployed in

parking lots. In VISS we adopt robust moving object detect-

ing and tracking algorithm, and we present a novel activity

recognition framework based on Layer Hidden Semi-Markov

Model (LHSMM) which is used for modeling activities. The

experimental results on real-time video show that the system

is effective and robust in complex activity recognition.

1. INTRODUCTION

Video surveillance is becoming increasingly important for tho-

se security-sensitive areas such as airports, banks, casinos,

and parking lots. Many efforts have been made in this field,

CMU’s Video Surveillance and Monitoring (VSAM) project

[1] and W4 real-time system [2] detect and track the human

in scene and recognize simple activities such as walking and

running. Recent systems [3][4] adopt HMMs to recognize ac-

tivities, but neither of them can gain a good performance for

complex activities.

In this paper we present a vision-based surveillance sys-

tem framework for recognizing complex activities in park-

ing lots. If the knowledge of the ground plane is available

VISS can be easily retrained for other scenes. In our system

we modify Codebook model [5] to detect moving objects in

the scene, and use Kalman filter-based tracking algorithm to

record trajectories for further analysis. Moreover we present

a novel method named Layer Hidden Semi-Markov Model

(LHSMM) to recognize complex activities such as stealing
car in parking lots. Activities are modeled in the LHSMM

in two ways: with HMMs, the bottom layer represents sub-

actions such as get close to car, surround car, stay by car,
get away from car in stealing car; the top layer represents the

complex activities and their states durations using HSMMs.

We adjust atomic segment length in subactions by feedback

information from the bottom layer’s recognition results. Us-

ing this mechanism VISS can understand the activities with

large variable-durations.
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The rest of the paper is organized as follows: In Section

2, the hardware and software architecture are provided. A

detail description of the algorithms is presented in Section

3. Section 4 demonstrates the system results, and Section 5

contains our conclusions and future works.

2. SYSTEM ARCHITECTURE

VISS obtains video data of the scene using static cameras

mounted at high places. The data from cameras is sampled

and compressed by the NETMEs (network video server, our

group has participated in its development) connected directly

with the cameras. NETMEs push the MPEG4 stream into net-

work. The store server and client, located in local or wide net-

work, stores and processes the stream coming from network

respectively. Figure 1 depicts a typical hardware architecture

of VISS.
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Fig. 1. The hardware architecture of VISS.

The whole software runs on the client. Firstly, it decodes

the MPEG4 stream into frame-based image sequence. And

then analyze the decoded image sequence to recognize activi-

ties. To recognize the activities, moving human detecting and

tracking must be firstly executed to obtain necessary informa-

tion such as trajectories. LHSMM is used to recognize the

activities. Detail algorithms will be discussed in Section 3.

3. ALGORITHM COMPONENTS

3.1. Foreground Detection

The capability of segmenting foreground regions from back-

ground is crucial for visual surveillance, since its accuracy

and robustness affect all the sequential processes. We mod-

ify Codebook (CB) model background subtraction algorithm

proposed in [5] mainly based on the following four aspects:
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• CB allows moving foreground objects in the scene during

the initial training period, which is necessary in our real-

time surveillance system.

• CB shows better performance in modeling fast variations

in background, which often occurs when the person is sur-

rounding the car.

• VISS works with low-bandwidth compressed videos be-

cause of the limited network bandwidth, CB can eliminate

most compression block artifacts.

• CB is efficient in both memory and speed for real-time

video surveillance system.

CB algorithm samples values for each pixel over long

times, it builds a codebook consisting of one or more code-

words. Samples at each pixel are clustered in the set of code-

words based on a color distortion metric together with bright-

ness [5]. In VISS, we build a background codebook and a

codebook cache for each pixel and define more reasonable

brightness range for long-time steady detecting.

Let l = {c1, c2, ..., cL} represents the background code-

book for the pixel consisting of L codewords, ci, i = 1...L
consists of an RGB vector vi = (R̄i, Ḡi, B̄i) and a 5-tuple

auxi = 〈Ǐi, Îi, fi, λi, qi〉 whose item means the min and max

brightness of all pixels assigned to this codeword, codeword

occurring frequency, the longest interval that the codeword

has not recurred and the last access time respectively.

Given background codebook l and an incoming pixel xt =
(R, G, B) , I =

√
R2 + G2 + B2 , CB finds the matched

codeword based on two conditions:

colordist(xt,vm) ≤ ε (1)

brightness(I, 〈Ilow, Ihi〉) = true (2)

We calculate the color distortion by

colordist(xt,vm) =
√
‖xt‖2 − 〈xt,vm〉2/ ‖vm‖2

(3)

and define

Ilow = min{αÎ, Ǐ}, Ihi = max{Î , Ǐ/β} (4)

where α < 1 and β < 1, which can handle the shadow and

highlight instances.

We also build a codebook cache to store codewords added

recently, and increase their f once a matched instance occurs.

We add the codeword to the background codebook when f is

larger than the predefined threshold.

3.2. Human Tracking

After foreground detection, we obtain separated regions. Be-

cause of noises, shadows, reflections and occlusions in im-

age sequence, a person may be mis-split into several smaller

close regions, some of them even merge with other unrelated

regions. Since the later seems infrequent in parking lots, we

handle the former instance by assuming that the human ap-

pearance model satisfies some constraint. We construct an

appearance model Havg which is adjusted when people walk

towards or away from camera, and normalize p(Havg) = 1 .

VISS merges close enough regions R1 and R2 based on the

following condition:

p(R1) < ε1, p(R2) < ε1 and p(R1 ∪ R2) > ε2 (5)

where ε1,ε2 are merging thresholds and

p(R) = pH(h/havg) · pW (w/wavg) · pS(
∑

x∈Rf

1/(h · w)) (6)

in which all the component probabilities follow Gaussian dis-

tribution, Rf represents the detected foreground region, h and

w represent the height and width of the region. After re-

gions merging, persons’ position and shape features are re-

calculated. Tracking over time involves matching persons in

consecutive frames using features such as intensity and shape

template. Firstly persons’ positions in next frame are pre-

dicted by:{
xpredict (n + 1) = x (n) + vx (n) ∆t
ypredict (n + 1) = y (n) + vy (n) ∆t

(7)

Here we assume that persons move at a reasonable speed, and

persons in next frame definitely fall into a near large region of

the predicted position. Then VISS searches the most matched

region in the large region for each person using intensity tem-

plate and shape template. We adopt intensity template corre-

lation function defined in [1] and a shape template cost func-

tion defined as follows:

DI(d) =
∑
x∈R

W (i, j)|In(x) − In+1(x + d)|
||W || (8)

DS(d) =
∑

x∈Rf

1/h × w (9)

where W (·) represents the distance of current pixel with the

central pixel. The best matched position is given by

d̂ = arg min
d

DI(d)

if DI(d̂) < TI and TSL < DS(d̂) < TSH

(10)

where TI and TSL,TSH are predefined thresholds. The new

position is pn+1 = pn + d̂ and the new velocity estimation is

given by v̂n+1 = d/∆t, and then we use α− β filter to refine

the values.

The regions merging mechanism eliminates the effect of

one region matching with multi-objects as well as multi-regions

matching with one object. If there is no match occurs, a new

object model is constructed.

3.3. Event Recognition

Event recognition is the most complex and challenging task in

video surveillance. Traditionally, event recognition focused

on learning the temporal characteristics in sequence using dy-

namic models such as the hidden Markov model (HMM).
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VISS aims to analyze the real-time video in which events cor-

responding to the same semantic content maybe differ greatly

in appearance. While the HMM is a simple and efficient

model for learning sequential data, its performance tends to

degrade when the range of activities becomes more complex,

or the activities exhibit long-time temporal dependency that

is difficult to be deal with under the Markov assumption [6].

Although the hidden Semi-Markov model and Layer HMM

[7] can solve the long-time case to some extent, they can not

cover the case that the duration varies greatly. We propose a

LHSMM framework to handle this problem: the bottom layer

recognizes the atomic actions and adjusts the segment length

by the ground plane knowledge and recognition results of bot-

tom layer; the top layer takes the output of the bottom layer

as observation sequence to recognize the complex activities.

When the object is being tracked, the system obtains the

feature vector xe = {x, y, vx, vy, ax, ay} representing the ob-

ject’s position, velocity and acceleration. To recognize the

stealing car for example, interaction information of human

and cars is essential. With the ground-truth about the cars,

feature vector is transformed into polar coordinates using the

cars’ center as the origins as shown in Figure 2. Let xi =
(ρi, θi, vi

ρ, v
i
θ), i = 1, ..., M be the interaction feature vector

of human and the ith car of M cars in the scene. Considering

the case that there is one car in the scene, x = (ρ, θ, vρ, vθ) is

the interaction feature vector and xi
f = (ρi

f , θi
f , vi

ρf , vi
θf ), i =

1, ..., N is reference feature vector where vi
ρf ∼ N(vi

ρ, σ
i
vρ

)
and vi

θf ∼ N(vi
θ, σ

i
vθ

).

2

1

1

2

Fig. 2. Polar coordinates.

Let X = {x1,x2, ...,xTL
} be the observation sequence

of the bottom layer in which xt represents t time feature and

Y = {y1,y2, ...,yTH
} be the observation sequence of top

layer, which is also the output sequence of bottom layer.
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Fig. 3. Graphical representation of LHSMM.

At the bottom layer, VISS holds HMMs with model pa-

rameter set λi
B = (πi,Ai,Bi), i = 1, ..., N for subactions

such as get close to car, surround car, stay at car, get away
from car. Firstly, we set up a buffer whose length l is initially

chosen as short as possible. At time t1, the conditional proba-

bility densities (CPDs) of segment vector sequence xt1:t1+l−1

in buffer are calculated as Pi = P (xt1:t1+l−1|λi
B) , and then

we adjust the segment length by

l̃ = f(ρ0, i
∗) × l × (

vi∗
pf

vp
+

vi∗
θf

vθ
) (11)

where i∗ = arg max
i

Pi, f(ρ0, i
∗) =

{
1 i∗ �= 1, 3
ρ0/ρf i∗ = 1

,

ρ0 is the value at time 0, while the length remain unchanged

when i∗ = 3. The adjusted vector sequence is xt1:t1+l̃−1 and

the CPDs are recalculated: yt = (P̃1, P̃2, ..., P̃N ).
The top layer utilizes HSMM to recognize the complex

activities consisting of subactions; its observation sequence is

the output sequence Y of the bottom layer. Let Qt be the state

of t and Dt be the remaining duration of state Qt. The param-

eter set of the model contains the prior probabilities πj , con-

ditional observation probabilities P (yt−d+1:t|q, d), transition

probabilities P (Qt|Qt−1, Dt−1) and P (Dt|Dt−1, Qt).These

parameters are described as follows:

πj = P (Q1 = j) s.t.
∑

j

πj = 1 (12)

P (Qt = j|Qt−1 = i,Dt−1 = d) =

{
δ(i, j) if d > 0
A(i, j) if d = 0

(13)

P (Dt = d′|Dt−1 = d,Qt = i) =

{
pi(d′) if d = 0

δ(d′, d − 1) if d �= 0
(14)

P (yt−d+1:t|q, d) =
t∏

τ=t−d+1

P (yτ |Qτ = q) (15)

where A is transition probabilities matrix, δ(·) is the Dirac

function, P (Q1 = j), P (yτ |k), pi(d′) are trained probabili-

ties. Given the model parameter λi
T , the observation proba-

bility is given by

P (y1:T , S|λi
T ) = πjpj(d1)P (y1:d1 |j, d1)

N∏
n=2

pQtn+1(dn)

P (Qtn+1|Qtn
, dn)P (ytn+1:tn+dn+1 |Qtn+1, dn+1)

where S = (Q1:T , D1:T )is an sample,tn =
n−1∑
i=1

di, n = 2, ...,

N . The final label is selected by c = arg max
i

P (y1:T |λi
T ).

4. EXPERIMENTAL RESULTS

VISS runs the software on a P4 2.8GHz computer at real-time

(25fps) for 352× 288 image sequence. We have deployed the
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system in a parking lot at Tsinghua Campus. Five actors act

as stealing car in different directions, velocities and regions.

Figure 4 shows an example of VISS detecting and tracking a

person in the scene. The red ball line is the trajectory tracked

using the method described in Section 3.2. Since we only use

Codebook model to eliminate the shadow, the dark shadow

cast at noon can not be eliminated completely which will re-

sult in blobs and splits in one person. Using the region merg-

ing method presented in this paper, we can eliminate most of

the mis-splited cases and obtain a smooth trajectory.

Fig. 4. The detection and tracking example.

We segment 53 stealing car (ST) samples from the video

and segment 23 samples into subactions for training LHSMM.

The segments and subactions durations vary as shown in ta-

ble 1. We also select two segments those durations beyond

1300 frames. Figure 5 shows an example of the bottom layer

recognition of the subactions. The x- coordinate value repre-

sents the time in which each is equal about 6 frames and the

y- coordinate value is the probabilities normalized into 1.

Table 1. Durations of subactions and stealing car samples

Subact.1 Subact.2 Subact.3 Subact.4 ST

Frame 147-

350

135-

250

80-150 125-

300

550-

1060
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Fig. 5. Subactions recognition results.

Compared with HMMs, LHSMM can recognize activi-

ties with large variable-durations. Using LHSMM VISS ob-

tains 90%-96% events recognition accuracy for the test sam-

ples with different threshold. While we recognize the same

samples using HMMs after segmenting the samples into equal

sub-segments, only 73%-76% accuracy is obtained.

5. CONCLUSIONS

This paper has described VISS system that records the trajec-

tories and recognizes the activities of human in the scene. We

have implemented VISS in a parking lot. VISS detects the

moving human using Codebook model background subtrac-

tion method and tracks the human using Kalman filter-based

tracking method. In the event recognition module we present

a LHSMM framework to recognize the activities.The results

demonstrate that our system properly segment moving objects

from background and obtain a smooth trajectories; also the re-

sults confirm the effectiveness of the presented LHSMM ac-

tivity recognition framework.

In this paper, we make the following contributions:

• We present a video intelligent surveillance system that can

recognize complex activities in real-time video.

• In VISS, we modify the Codebook model for long-time

steady detection. We present an effective region merging

method to eliminate most of mis-slpit cases to obtain a

smooth trajectory.

• We present an event recognition framework for complex

activities with large variable-durations, which utilizes the

nature of inherent hierarchical structure in activities and

typical duration. We also eliminate the effect caused by

the large-variation of duration by the feedback informa-

tion of the bottom layer.

However, VISS can not recognize the activity sequence

with overlapped boundaries between two consecutive activi-

ties which will result in errors in a long time. How to recog-

nize complex activity sequence is our future research work.
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