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ABSTRACT 

This paper presents a robust and efficient skeleton-based graph 
matching method for object recognition and recovery applications. 
The novel feature is to unify both object recognition and recovery 
components into an image understanding system architecture, in 
which a complementary feedback structure can be incorporated to 
alleviate processing difficulties of each component alone. The idea 
is firstly to recognize the preliminary extracted object from a set of 
models using the new skeleton graph matching method, then to 

apply the a priori shape information of the identified model for 
accurate object recovery. The output of the system is the 
recognized and segmented object. The skeleton graph matching 
method is illustrated by recognizing a set of tool and animal 
silhouette examples with the presence of geometric transformations 
(translation, rotation, scaling, reflection), shape deformations and 
noise. Experiments of object recovery using MR knee images, have 
shown satisfactory results. 

1. INTRODUCTION 

Image understanding generally includes two key interrelated 
components: image segmentation and object recognition. Image 
segmentation approach such as deformable contour method (DCM) 
[1-3] yields contours, either exact or approximate, of objects of 

interest in images for recognition. Given the segmented object 
shape, object recognition performs shape matching to identify the 
object from a set of models. The recognition results can be fed 
back into the image segmentation to enhance the accuracy and 
robustness of the segmentation results, which is referred to as 
object recovery. Our work focuses on object recognition 
component, which is implemented through a novel object skeleton 
matching approach, i.e., matching the skeleton graph of an input 
DCM [3] contour with those of models. Skeleton is selected here 
from a group of well-known shape descriptors (e.g., chain code, B-
spline, Fourier and wavelet descriptors) due to its significant 

features on the desired representational properties, such as 
invariance to object geometric transformations (translation, 
rotation and scaling) and reversibility to the original shape. 
Moreover, skeleton is the only descriptor providing object 
structural information, such as location of convex-parts, width and 
length of each part, which is important for the object recognition 
applications. The “best” matching skeleton pair determines the 
correct model and constructs the contour feature point (landmark) 
correspondences. The correspondences of the contours’ segments 
follow automatically. For the DCM contour segments with a large 
error when compared with the corresponding model segments, a 

fine-tuning process, which is formulated as a maximization of a 
posteriori probability [4], is performed for final object recovery.  

The objective of this paper is to present a new skeleton-based 
graph matching approach for object recognition, finally yielding a 
robust and efficient object recovery, which is different from most 

of previous related works [5-11]. Using object morphology 
skeleton, Ruberto [5] derived the attributed skeletal graph with the 
selected attributes like distance function, curvature variation and 
size. With the unordered tree representation, it does not necessarily 
preserve the order of skeleton edges/branches at nodes in the final 
match. Luo and Hancock [6] proposed a purely structural approach 
for inexact graph matching between two point sets, which is 
formulated as a maximum-likelihood estimation. It can only handle 
small rotation and non-rigid shape deformations. Zhu and Yuille 
[7] constructed object skeleton model in terms of the principal 
deformation modes for object recognition. The algorithm is 

sensitive to noise on primitive segmentation and computationally 
demanding with multiple parameters to be tuned. Shock graph [8-
11] consider object skeleton as a set of singularities (shocks), 
which can be further represented as a shock tree/graph for shape 
representation and matching. The matching algorithm is to find the 
shock graph node correspondences based on both the graph 
topological and geometrical similarities, which are constructed by 
the shock category and attributes, such as location, orientation and 
time of formation. The matching algorithms are usually 
implemented by assignment algorithm [9], finding subgraph 
isomorphism [8,10] or edit-distance algorithm [11]. The shock 
segmentation and matching algorithms are complex and sensitive 

to noise. Moreover, these algorithms are for object recognition 
purpose, and not well suited for object shape recovery since 
correspondences on contour landmarks cannot be derived from the 
skeleton edge correspondences. 

The rest of the paper is organized as follows. The notation for 
skeleton entities is presented in Section 2. Section 3 gives the 
algorithm description. Experiments on matching and recovering 
shapes are provided in Section 4. Section 5 draws the conclusions. 

2. SKELETON STRUCTURE NOTATION 

The object skeleton consists of the locus of centers of maximal 
disks (CMD) that can be inscribed within the object and a maximal 

disk is not completely contained in any other disks in the object. 
The notation used for the major skeleton graph entities is 
illustrated in Figure 1(a) with a skeleton example of a side view of 
a quadruped animal. The curve segments of actual skeleton edges 
are simplified as line segments. The attributes of a skeletal point on 
the derived skeleton graph are its distance value and if it is a CMD 
or not. In Figure 1(a), a skeletal point having only one skeletal 
point in its eight neighbors is defined as an ending node (E-node) 
(e.g. A, B) and a skeletal point having at least three points in its 
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eight neighbors is a bifurcation node (B-node) (e.g. C, D). All 
others are normal nodes. After the skeleton computation, skeletal 
points can be linked to form skeleton edges (SE). A SE includes 
the skeletal points between a B-node (or an E-node) and another B-
node. A SE with two B-nodes is a primary SE (e.g. CD); otherwise 
it’s a normal SE (e.g. AC). 

3. PROPOSED APPROACH 

The skeleton-based object recognition and recovery approach can 
be described in four major steps: (I) skeleton processing, (II) 
skeleton model construction, (III) skeleton matching and model 
detection, and (IV) contour segment correction, as shown in Figure 
2. Two types of object models: skeleton model and contour 
segment models are involved in our approach. The skeleton model 

is constructed for shape matching and object recognition in Step 
(III), and the contour segment models are for fine-tuning the final 
object shape recovery result in Step (IV).  

Figure 2. Object recognition and recovery flowchart 

(I) Skeleton Processing 

The first step consists of skeleton computation [12], removing SEs 
produced by shape noise, and representing the skeleton. After 
deriving the skeletons for input and model contours, the skeletons 
can then be pruned based on the importance of the SEs. For each 
normal SE, we can determine its importance by comparing the 
original shape with the shape reconstructed from the skeleton 
without that SE. A large difference in the shapes indicates that the 

SE is important; otherwise, it is due to shape noise and can be cut 
out from the skeleton graph. For effective processing, the skeleton 
graph is further represented by a tree and a string of SEs, as shown 
in Figure 1(b) and 1(c), respectively. A B-node tracing algorithm 
to generate a skeleton tree is applied to record SEs sequentially, 
starting from the B-node connected with the shortest normal SE. 
The tree nodes are the B-nodes and the tree edges are the primary 
SEs as underlined in Figure 1(b). Finally, the skeleton tree can be 
represented as a SE string (Figure 1(c)) grouped by the B-nodes, 
and each group consists of a set of SEs connected by the common 
B-node. 

(II) Skeleton model construction
Two major types of information: rigid transformations and 
nonrigid deformations, are collected to specify the model and used 
in matching. The first includes the admissible connectivity 
relationship among the skeleton edges, parameterized by the 
bifurcation angles between adjacent SEs and the variations of 
skeleton edges caused by the bifurcation delay/splitting phenomena 
(BDP/BSP) [7] (e.g. the B-node D will split to two B-nodes as FD 
shifts left along DJ in Figure 1(b)). The second includes the object 
shape variations, described as the Gaussian distribution on the 
distance values of skeletal points. 

(III) Skeleton matching and model detection 
In our application, a similarity function is proposed to measure the 
resemblance between the input and model skeleton graphs. Given 

an input shape skeleton string D=(d1, d2, … , dR) and a model 
skeleton string M=(m1, m2, … , mS), the matching is to find the SE 
correspondences in the two strings to maximize the similarity 

function:  )/(),( 321
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similarity of the input shape D and a model M, weighted by the 
shape error weight E1, the thickness error weight E2, and the length 
error weight E3.

Assume the skeleton edge di matches with mj (i=1, 2, …R, 
j=1, 2, …S) and only T skeleton edge pairs (e.g. T=min(R,S)) are 
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normalized distance values of the kth corresponding points on the 
matched skeleton edges di and mj, respectively, after normalizing 
the skeleton edges di and mj to be the same length N. rdik and rmjk

are normalized with respect to the largest distance value on di and 

mj, respectively. σk is the variance of the normalized rmjk to 

represent the nonrigid deformations. In the experiments, we use 
ln(p(di, mj)) instead of p(di, mj) to avoid a very small P. The E1 is to 
measure the shape difference between D and M. After transforming 
the input SE di to the coordinate system of its corresponding model 
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Figure 1. Skeleton graph notation 
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SE mj as di’ and normalizing it to be the same length N as mj, E1

can be computed as: 
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and (xmjk, ymjk) are the coordinates of the kth corresponding points 

on di’ and mj, respectively. The E2 is to measure the difference of 
the average thickness ratio between D and M, and it is formulated 

as:
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ird  and jrm  are the average distance values of di and mj, rd

and rm  are the average distance values of all the skeletal points 

on D and M. Likewise, the length error weight E3 is to measure the 
difference of the length ratio between D and M.

The optimization process is divided into two sequential 
subtasks: structural and statistical matching. In the structural 
matching, a branch-and-bound string matching algorithm is used to 
search over all possible matches between the two strings for the 
same number and connectivity relationship of B-nodes, and the 
same numbers of primary and normal SEs in each matched B-node 
group pair. For each match found, several validity checks based on 
the rules and information collected in Step (II) can be used to take 
out the invalid matches, thus reduce the searching space for 
following steps. The statistical matching is to detect the correct 
model from a set of models passed above validity checking and 

determine the correct SE correspondences based on the similarity 
function between the input and model skeletons. The model 
producing the largest similarity is selected and the SE 
correspondences in that match are considered correct. 

(IV) Contour segment correction
The contour landmarks are determined by the E-nodes of 

skeleton edges. These landmarks are then used to determine the 
contour segment correspondences. Contour segments are compared 
for errors. The error computation is the same as the computation of 
the shape error weight E1, in which the skeleton edges are replaced 
as the contour segments. A fine-tuning process, which is 
formulated as a maximization of a posteriori probability [4], given 
the contour segments model and image features, is performed on 

the segments with large errors for final result. 

4. EXPERIMENTS 

In this section, two experiments are used to illustrate our 
algorithm: the first experiment uses a set of animal silhouette 
shapes from Brown University Stimuli and [7], as well as a set of 
biological and tool shapes from Rutgers’s database and [8] to 
demonstrate the skeleton graph matching algorithm for object 
recognition; the second uses biomedical image samples, MRI knee 
images to show the object recovery process.  

For the first shape set in the object recognition experiment, it 
is to select the most similar shape for the input test shapes, shown 
in Figure 3 (a)-(h), from a set of animal model shapes shown in 

Figure 3 (1)-(9). After skeleton matching is used to locate the 
corresponding SEs between the input and all the possible models, 
the similarity functions are computed for all valid matches. Table 1 
shows the linearly normalized similarity values (0-10), with the 

highest values being shown in boldface. The quadruped mammals 
don’t match with birds due to their different skeleton structures. 

 (a) (b) (c) (d) (e) (f) (g) (h) 

(1) 8.90 2.79 0.18 0.65 0.64 3.81 - - 

(2) 0.01 4.66 0.01 2.22 1.98 2.05 - - 

(3) 4.45 3.27 0.55 3.70 3.61 0.97 - - 

(4) 5.12 0.28 5.12 0.08 0.06 0.88 - - 

(5) - - - - - - 0.44 2.49 

(6) - - - - - - 1.74 0.86 

(7) - - - - - - 3.94 3.53

(8) - - - - - - 3.17 3.30 

(9) - - - - - - 4.08 1.70 

Top five similar shapes  Input 
shape 1 2 3 4 5 

    

    

   

   

    

The second shape set is shown in Figure 4, with the twenty-
eight objects being classified as nine classes (models). Similar to 

(b) 

(g) (f) 

(a) 

(h) 

(c) 

(5) bird (7) cock (8) eagle (9) ostrich 

(1) cat (2) dog (3) horse 

(4) lion (6) duck 

Figure 3. The first shape set for object recognition

Table 1. Similarity values between input and model shapes
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5.28 1.52 0.59 
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9.84 

2.97 

3.39 1.76 0.97 0.54 0.05 

(e) (d) 

Figure 4. Second set: tool and biological shapes 

Table 2. Top five matches for each input shape 
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[5,8], an object was selected from each class as the input shape. 
When single SE error is allowed, the top five matches with the 
linearly normalized similarity values (0-10) are shown in Table 2. 

For object recovery, two midline sagittal MRI knee images of 
size 256 by 256 (Figure 5) are used in the second experiment to 
extract the femoral condyle (top portion of the knee). The 
challenge is that there is a blurry edge segment along the middle 

top boundary, while the left and right portions of the femoral 
condyle are rather darker than the middle region. This prevents the 
deformable contour to reach the real boundary on the two sides 
before it flows out from the top. The two input knee contours 
(Figure 6(b), (c)) obtained by a DCM [3] are used to match with 
the knee model (Figure 6(a)) from a radiologist. The skeletons of 
the knees after noise removal are shown in Figure 7. The contour 
landmarks are determined from the skeleton E-nodes and the 
skeleton matching algorithm is applied to construct the 
correspondences, e.g., the E-nodes of a, b, and c on the model and 
input skeletons (Figure 7) correspond to landmarks of A, B and C 

on the model and input contours (Figure 6). Two large error 
segments in both input contours (BC & CA in Figure 6(b), AB & 
CA in Figure 6(c)) are corrected and the final recovery results are 
shown in Figure 8. It can be seen the final results have less shape 
error than those before correction. 

5. CONCLUSIONS 

In this paper, a robust and efficient skeleton-based shape matching 
method is presented to solve the object recognition and recovery 

problems for image understanding. The presented method uses a 
combination of both structural and statistical approaches that are 
applied in a sequential manner. The connectivity relationship 
among skeleton edges and the geometrical features of skeleton 
edges are used for skeleton graph matching. The object recovery 
using the skeleton-based shape matching approach is invariant to 
object geometric transformations. Thus the initial condition 

requirements and the searching space for object recovery are 
reduced significantly compared with many other model-based 
DCMs. The experiments with the animal and tool shape matching 
and the MRI knee shape recovery demonstrate the capability and 
potential of this new approach. 
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Figure 5. Input MRI knee 1 and 2 images

Figure 6. The knee model and input shapes obtained by a DCM [3]

Figure 8. The knee recovery results 1 and 2 after segments correction

A

B

C

a a ac c c

b b b

Figure 7. The knee skeletons of shapes in Figure 6 after noise removing 

(a) Model skeleton  (b) Knee 1 skeleton  (c) Knee 2 skeleton  

(a) Knee model skeleton  (b) Knee 1 skeleton  (c) Knee 2 skeleton  
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