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ABSTRACT 

A new musical onset detection technique based on adaptive 

linear prediction theory is proposed in this work. We 

decompose a music signal into multiple sub-bands, and then 

apply a forward linear prediction error filter (LPEF) to 

model the narrow-band signal in each band, respectively. To 

enhance the modeling performance, the coefficients of the 

LPEF are updated with the least-mean-squares (LMS) 

algorithm. Under this framework, the onset detection 

problem can be formulated as the peak-error location 

problem. Peak selection algorithms are applied to prediction 
errors to locate the onset time. It is shown by experimental 

results that the proposed algorithm outperforms several well 

known existing methods for onset detection. 

1. INTRODUCTION 

Onset detection is an important problem in musical signal 

analysis. It is an essential step towards many advanced 

music analysis tasks, including tempo analysis, beat tracking, 

and automatic transcription. The onset information is also 

useful to temporal segmentation. Since the music signal is 
event-based, segmenting it into individual note events 

greatly facilitate editing and analysis of audio. 

Due to its importance, several methods have been 

proposed to address the onset detection problem in recent 

years. Scheirer [1] used the amplitude envelops of signals in 

several frequency bands to determine onsets. However, 

since his goal was to retrieve the high-level information 

such as beat and tempo in music, onset detection only 

served as a preprocessing stage in his overall system where 

not every onset has to be located accurately.  Klapuri [2] 

attempted to tackle the one-by-one onset detection problem 

based on the psychoacoustic model. More recently, since 
soft onsets cannot be easily identified by the amplitude 

change, new methods have been proposed using the phase 

information as well as the energy envelope. Duxbury et al.
[3] developed a system that takes distributions of the phase 

deviation and the spectral magnitude difference into account. 

Another algorithm proposed by Bello et al. [4] also tried to 

combine the phase and energy information for onset 

detection by extracting features from the complex short-time 

Fourier transform (STFT) domain. There are techniques 

originating from a different viewpoint. For example, 

Abdallah and Plumbley [5] used the probability model and 
the independent component analysis (ICA) to analyze music 

signals for onset detection. A tutorial on onset detection 

techniques can be found in [6]. Although many algorithms 

have been developed so far, their performance is still not 

satisfactory in dealing with a complex mixture of many 

music sounds as shown in [7], where their accuracy was low 

for large corpus. 

A new approach for onset detection based on adaptive 

linear prediction is proposed in this work.  Linear 

prediction has been widely used for the modeling and 

analysis of time series. It is especially popular in speech 
signal processing such as speech synthesis and coding. Its 

application to music signal modeling was reported in [8]. 

However, to the best of our knowledge, there is no previous 

work that applies linear prediction to the onset detection 

problem. Here, we derive a detection mechanism by passing 

the audio signal through an adaptive linear prediction error 

filter (LPEF) with the following rationale. When a signal is 

modeled by linear prediction, it is assumed to be stationary 

or quasi-stationary. However, at the note boundary, the 

stationary assumption fails to hold and the prediction error 

increases significantly. Consequently, the onset can be 
located by analyzing the prediction error.   

The rest of the paper is organized as follows. An 

overview of the onset detection system is presented in Sec. 2. 

The linear prediction error filter and onset selection are then 

discussed in Sec. 3. Experimental results are conducted in 

Sec. 4 to demonstrate the superior performance of the 

proposed algorithm as compared with other existing 

techniques. Concluding remarks are given in Sec. 5. 

2. OVERVIEW OF PROPOSED SYSTEM 

Generally speaking, an onset detection system consists of 
two main modules. The first module processes the input 

audio signal and converts it to a 1-D detection function (or a 

time series) that exhibits peaks where the properties of the 

signal changes, i.e. where the onset happens. Its sampling 

rate is usually much lower as compared to the original signal. 

The second module then finds the peaks of the detection 

function and the onset time can be determined accordingly. 

In deriving the detection function, it is useful to 

decompose a musical signal into several sub-bands and 

analyze the information in each sub-band separately [1,2,3, 
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6]. This can be explained by the fact that a broadband signal 

has a larger degree of freedom so that its modeling is more 

complicated than a narrow-band signal. Different modeling 

and decision techniques can be applied to signals in each 

sub-band. Afterwards, their outputs can be integrated to 

form a single decision [3].  
The proposed detection system is shown in Fig. 1a. A 

filter bank is used at the first stage to decompose the target 

signal into 6 non-overlapping bands of varying bandwidths. 

The 1st filter covers a band with frequencies lower than note 

C5 (i.e. 523 Hz) and the bandwidth is around 500Hz. The 

2nd and the 3rd bands are one-octave band-pass filters and 

their bandwidths are about 500Hz and 1000Hz, respectively. 

The next two filters, each of which covers 1000 Hz, form 

the 4th and the 5th bands. The 6th band contains the region 

with frequencies higher than note B7 (i.e. 3951 Hz). 

Features extracted from sub-bands are shown in Figs. 

1b and 1c. The first five bands are decimated (or 

down-sampled) by a factor of 20 to 1, which is then 

followed by the analysis of a linear prediction error filter 

(LPEF). This filter will be explained in detail in Sec. 3. The 

decimation before linear prediction is an important step in 

this system. First, it can reduce the amount of computation. 

Second, the decimation makes the poles of the underlying 

signal to spread more evenly over the entire frequency range. 

When poles of a signal concentrate at a small region, it is 

more difficult to find good linear prediction coefficients 
with adaptive coefficient update [9].  

The input audio signal is sampled at a rate of 44KHz. 

The frequency ranges of the first two bands are lower than 

1.1KHz so that they can be decimated directly without any 

aliasing effect as shown in Fig. 1b. In contrast, signals in the 

other 3 bands contain frequency components higher than 

1.1KHz, and their cutoff frequencies are not an integer 

multiple of 1.1KHz. Thus, we have to pay special attention 

to their processing. As shown in Fig. 1c, these signals are 
multiplied by a sinusoidal wave so that their respective 

spectrum is shifted to the low-frequency range. The 

frequency of the sinusoidal wave depends on the lower 

cut-off frequency of the particular band. Furthermore, we 

apply a low-pass filter with a cut-off frequency of 1.1KHz 

before the decimation operation.  

The only sub-band without linear prediction analysis is 

the last one of the highest frequency range. Generally, there 

is only little energy left in this high frequency band. The 

signal in this band does not have strong harmonic 

components (or no obvious peaks in the spectrum), which 
implies that the auto-regressive (AR) model, or linear 

prediction, is not suitable for this band. Thus, we simply 

adopt the amplitude envelope of the signal in this band. It 

was observed in [10] that percussion onsets can be well 

modeled as bursts of white noise, which will result in energy 

rise in all frequencies. This is especially obvious in the high 

frequency region. Then, the envelope of this band can serve 

as a good detection function for percussion onsets. 

After getting linear prediction errors in bands 1-5 and 

the amplitude envelope of band 6, we determine their 

low-frequency envelopes through rectification, smoothing 

and decimation by a factor of 20 to 1 as shown in Fig. 1a. 
For each band, an envelope of a sampling rate of 110 Hz is 

obtained. We will simply add these six envelopes together to 

form the final detection function.  

At the last stage, a peak selection algorithm is used to 

locate the onset time. There are several candidate algorithms 

available for this purpose. Here, we use the median filter 

dynamic threshold method, which is similar to the one used 

in [3] and [4]. Let D[n] denote the detection function. A data 

location n is called a peak if 

)jnDinDmediannD ][ to][(][ +−+> δ ,        (1) 

where δ is a preset threshold and parameters i and j control 

the length of the sliding window. To detect a rising edge 

effectively, we demand i > j. In our experiments, i and j are 

chosen to be 5 and 2, respectively. 

It is worthwhile to point out that two onsets in a music 
signal can hardly be distinguished by human being if the 

distance between them is less than 60ms. Thus, if two peaks 

are found to be within a window of 60ms, the latter one will 

be discarded. This can be viewed as a post-processing step 

applied to detected onsets. 

3. LINEAR PREDICTION ERROR FILTER (LPEF) 

3.1 Basic LPEF Algorithm 

To model a signal using the linear prediction technique, we 
assume that the signal is generated by an AR process. This 
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actually provides a good way to synthesize musical sounds 

consisting of several harmonic components. Mathematically, 

the AR process can be written as: 
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where p is the model order, ak are the forward prediction 

coefficients and v[n] is a noise-like signal which is 

independent of x[n]. If coefficients ak, are known, we can 

calculate v[n] by passing x[n] through an FIR filter with 

coefficients ak,. However, these coefficients are usually 

unknown, and they can be estimated by minimizing the 

energy of v[n]. There are several ways to compute the 

prediction coefficients. Since the music signal is not 
stationary in the long run, the prediction coefficients should 

be updated with time. Here, we use an adaptive algorithm to 

track these coefficients whenever a new sample of x[n]
arrives. 

Fig. 2 shows the structure of a linear prediction error 

filter (LPEF), where x[n] is the input signal and e[n] is the 

output prediction error. The LMS (Least-Mean-Squares) 
method is used as the adaptive algorithm for weight 

coefficient update. The LMS-based weight update iteration 

can be written as 
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where µ is the step size, u[n]= (x[n-1],x[n-2],…,x[n-p])T

and w[n]= (a1, a2,…, ap)
T.

The prediction error e[n] derived by this filter provides 

an approximation to v[n] in Eq. (2). For a stationary input 

signal, the weight vector w[n] converges, and e[n] is close 

to v[n]. If the AR model is accurate, the energy of e[n] will 

be small. However, at the onset point where the statistical 

property of the input signal changes abruptly, the weight (or 

the linear prediction coefficients ak,) cannot be changed 

immediately. Then, the prediction error increases due to the 

poor modeling effect of the existing AR process. This leads 
to a peak in the energy of the filter output. 

3.2 Discussion on the Design of LPEF 

A. Step Size in LMS 

The choice of step size µ  is critical to the performance of 

the LPEF. Generally speaking, we want the weight to 

converge as fast as possible for a stationary input so that the 

occurrence of a non-stationary signal can be detected 

quickly. Then, the step size can be selected based on the 

normalized LMS. That is, we set 

][][/1 nnT uu=µ ,     (4) 

where u[n] is given in Eq. (3). The choice in (4) makes the 

step size as large as possible while the convergence 

behavior is guaranteed. However, the large step size given 

in (4) will cause some problems in our application. First, if 

the weight vector converges too fast, the error increases due 

to the model mismatch at the onset point may become less 

obvious. Second, a large step size may make e[n] deviate 

from v[n], to result in a larger value in the steady region [9]. 

In a nearly silent region, this effect is even worse since the 

magnitude of u[n] is extremely small. All these properties 
are undesirable for peak selection applied to the detection 

function. Thus, we want to choose a smaller step size in our 

current context.  

We obtain a low-pass filtered version of u
T[n]u[n], 

which is denoted by r[n], and choose step size µ  via 
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The low-pass filtering is used to prevent u
T[n]u[n] from 

approaching zero, which leads to a very large step size. The 

factor 0.1 is determined empirically. The second term in (5) 

is added to guarantee the convergence of the LMS 

algorithm. 

B. Model Order Selection 
The order of the AR model, denoted by p in (2), is another 

important parameter. In principle, any signal can be model 

by an AR-model if an infinite order is adopted. However, a 
larger order will demand higher computational complexity. 

It is observed that an order number p between 25~50 works 

well for each band. In our experiments, we use p=40 for the 

first sub-band, and p=30 for the remaining five sub-bands. 

4. EXPERIMENTAL RESULTS 

To evaluate the proposed algorithm, we test it in a database 

containing multiple music types, including 7 types of solo 

musical instrument performance (piano, guitar, violin, cello, 

trumpet, woodwind, etc.) and 7 files of complex music 

mixtures. Part of our audio signals and labels are from a 
public database [11]. We also label other music signals 

using the tool provided in [11]. All audio files in our 

database are mono PCM sampled at 44.1KHz with 16-bit 

resolution per sample. All audio samples are normalized to 

the range [-1,1] before onset detection. The lengths of audio 

files are 7~30 seconds. There are 24 files in total, containing 

1143 onsets. In our experiments, an automatically detected 

onset is viewed as “correct” if its distance to a labeled one is 

less than 50ms. This margin allows the inaccuracy of hand 

labeling. One ground-truth onset can only be matched by 

one detected onset, and vice versa. Thus, doubled onsets 
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(two detection for one true onset) and merged onsets (one 

detected onset for two true onsets) will be considered as 

errors. The numbers of files and onsets in each category are 

listed Table 1.  

Table 1. Performance comparison of onset detection 

algorithms 

Well known performance metrics for onset detection 

include: Precision, Recall and the F-measure. Let CD, FP 

and FN denote the numbers of correct detection, false 

positive and false negative, respectively. These three metrics 
can be expressed mathematically as 

• Precision = CD / (CD+FP), 

• Recall= CD / (CD+FN) 

• F-measure =2 * Precision * Recall / (Precision + Recall)

The results are shown in Table 1.  The threshold δ  in Eq. 

(1) is set to 0.01 for all audio files. It is worthwhile to 
mention that the high false positive rate in solo woodwind is 

due to many detected offsets, which is actually good for 

some applications such as segmentation and transcription.  

Since the test audio files used in previous work are different 

from ours, the performance cannot be compared directly. 

For the comparison purpose, we implemented two methods; 

namely, the complex STFT domain method [4] and the ICA 

method [5]. The last column in Table 1 is the F-measure 

value of the complex STFT domain method [4]. Since a 

larger F-measure implies better detection performance, we 

see that the proposed method outperforms the complex 
STFT domain method for all test audio files. 

Although the three methods have different detection 

functions, all of them demand a peak selection algorithm in 

the final stage by choosing thresholdδ . To compare the 

effectiveness of the three detection functions, we plot 

performance curves by varying threshold values. The recall 

rate versus the false positive rate for each of the three 

methods is plotted in Fig. 3. It is clear the proposed method 

gives the best results while ICA the worst. 

5. CONCLUSION AND FUTURE WORK 

An adaptive linear prediction error filtering method was 

proposed for onset detection in musical signals. It has 

superior performance as compared with previous methods. 

We will continue to improve the proposed scheme and make 

more tests to show the advantages of the new method. 
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Signal Files No. of 
Onsets 

Preci- 
Sion(%) 

Recall 
(%) 

F- 
measure

F
Complex

Solo Piano 4 205 98 99 98 91 
Solo Guitar 2 99 84 93 88 84 
Solo Violin 3 208 84 90 87 74 
Solo Cello 2 120 82 78 80 67 
Solo Trumpet 1 60 84 95 89 80 
Solo 
woodwind 

2 102 67 93 78 72 

Solo others 3 55 58 96 72 68 
Complex 
Mixture 

7 328 72 72 72 63 

Total 24 1177 79 86 83 73 
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