
CONSTRUCTING ROBUST AND RESILIENT FRAMEWORK FOR COOPERATIVE VIDEO
STREAMING

Shi Lu and Michael R. Lyu

View Lab, Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong SAR
{slu, lyu}@cse.cuhk.edu.hk

ABSTRACT

Peer-to-peer based streaming has been a promising solution
for large-scale video broadcasting over the Internet. In a
peer-to-peer video streaming framework, peers cooperate
with each other for content distribution, so that the bur-
den of the central server is greatly alleviated. Moreover,
the peer-to-peer overlay is highly scalable to support a very
large number of users. However, to support video stream-
ing service, some strict performance issues need to be ad-
dressed, e.g., reliability, resilience and robustness to net-
work dynamics. In this paper, we investigate several goals
that a peer overlay should achieve in order to support good-
quality video streaming. We then describe our work on or-
ganizing peers into such a robust and resilient framework.
We have implemented a fully functional video broadcast-
ing system based on the proposed peer-to-peer infrastruc-
ture. The prototype system has been successfully deployed
and tested upon Planet-lab with encouraging experimental
results.

1. INTRODUCTION

Videos have become pervasive nowadays. Consequently,
video streaming service has been one of the most attrac-
tive applications on today’s Internet. However, although
there has been a rapid advancement of network bandwidth
and high-capacity storage devices, distributing digital me-
dia contents simultaneously to a large number of users is
still a challenge for the content providers. Traditional client-
server infrastructure is not scalable and only a limited num-
ber of users can be supported within the server capacity. To
overcome this problem, Content Delivery Network (CDN)
deploys a large number of servers at the edge of the Internet,
and the users’ requests are redirected to the nearest server.
However, CDN solution demands very high expense on pur-
chasing and deploying the dedicated servers.

On the other hand, peer-to-peer based file sharing sys-
tems have been quite successful. Currently there are sev-

eral popular file-sharing systems based on peer-to-peer in-
frastructure, like Napster [1], Gnutella [2], BitTorrent [3],
DC++ [4], eMule [5], and each of them has attracted a siz-
able user group. In comparison with the traditional client-
server infrastructure, peer-to-peer based content distribution
systems transfer data in a de-centralized way. They are able
to support a large group of users with very little, if any, dedi-
cated resources. Moreover, since their system capacity grow
dynamically with the number of participants, the more peers
there are in the system, the better the overall performance
will be. These scalable overlay networks show good poten-
tials to support real-time video streaming services.

Enlightened by the peer-to-peer file sharing systems, sev-
eral cooperative streaming schemes have been proposed. [6,
7] construct a tree-shaped overlay for content relay. Ran-
dom mesh overlay are employed by [8, 9, 10]. Moreover,
some systems have been publicly released [10, 11, 12].

Video streaming, in comparison with file sharing, de-
mands much more in performance. We identify several is-
sues the peer-to-peer framework should fulfill to support
live video streaming. First, the framework should be re-
silient enough to quickly adapt to the changes of network
conditions, e.g., latency and bandwidth, and still ensure a
satisfying in-bound bandwidth on each peer. Second, since
peers are free to leave and join, the framework should be
robust in ensuring its performance and keeping the whole
framework from being broken into several components by
some peers’ leaving. Third, for a specific peer, it should be
able to assign the data transfer workload to its neighbors in
a balanced and fair manner. In the literature, few work has
investigated all the above issues in the context of peer-to-
peer video streaming. In this paper, we describe our work in
organizing the peers into such a resilient and robust frame-
work to meet the performance requirements and support the
video streaming service.

The paper is organized as follows: In Section 2 we give
an overview of our peer-to-peer video streaming framework.
In Section 3 we describe the scheduling algorithm and op-
timization in our framework. In Section 4 we show some

9171424403677/06/$20.00 ©2006 IEEE ICME 2006

Video streaming

server
Source Peer

Participant peer

Participant peer

Participant peer

Participant peer

Participant peer

Participant peer

Participant peer

New peer

Lookup service

Find neightbors

Retrieve peer list

Participant peer

Participant peer

Participant peer

Fig. 1. Overview of the p2p streaming infrastructure

experiment results. Finally, in Section 5 we make conclu-
sion and discuss our future work.

2. THE PEER TO PEER STREAMING
FRAMEWORK

Here we give an overview of our peer-to-peer video stream-
ing framework, shown in Fig. 1. The system is composed
of a video streaming server, a source peer, a lookup ser-
vice and the participant peers. The source peer takes the
streaming content from the video streaming server and feeds
the content into the peer overlay. The lookup service helps
new peers to find other peers; it can be either centralized or
distributed. To join the video streaming framework, a new
peer first contacts the lookup service, obtains a list of on-
line peers, then establishes connections with other peers and
starts receiving the content. Each of the participant peers
maintains a local media buffer, in which some media data
is stored for supporting the local media player and further
shared to other peers in the broadcast framework.

3. SCHEDULING AND OPTIMIZATION IN THE
FRAMEWORK

3.1. Receiver-driven data transfer

To adapt to the network dynamics, especially the changes in
network bandwidth and delay, data content transfer in our
framework is in a receiver-driven mode; in other words, it
is the receiver to monitor the data distribution and the per-
formance of network links then determine the amount and
direction of the data flow.

The data content transferring process is driven by data
distribution information, which is similar to [10]. For a data
packet, its availability state can be available or unavailable.
Then the data status of a peer can be represented by a data
status bit-map (DSB), where one bit corresponds to one
data packet. The size of the DSB is quite small, so every
exchanged message in the framework is attached with the
most current DSB of the sender peer. Consequently, each
peer is always keeping up with the most up-to-date DSB of
its neighbor peers. The data flow direction of one connec-
tion is two-way, determined by data distribution. Consider
peer A and peer B, for example. When peer A finds that
peer B has data that it does not have, it may send a request
to peer B for that data packet; after some time maybe peer
B finds that peer A has some data that it does not have, then
their sender-receiver roles will be changed.

3.2. Bandwidth/delay monitoring

A peer maintains several network links {l1...ln} to its neigh-
bors NB = {nb1...nbn}. For each link li, the peer moni-
tors three performance parameters: current data in rate ri

in,
current data out rate ri

out and the current request delay di.
ri
in and ri

out are measured as the mean data rate over a time
interval. di is the time interval between the last sent data
request and the arrival of the corresponding data block.

3.3. Data transfer scheduling

Consider the mesh formed by the participant peers as a graph,
the optimal way to distribute the data packets is of course
by sending packets along the minimum-spanning tree of the
peer overlay. However, the topology of the graph is always
changing for peer join or leave. Moreover, the network link
bandwidth and delay are volatile too. In such a volatile cir-
cumstance, obtaining a minimum spanning tree of the peer
overlay at every moment is infeasible. In our implemen-
tation, we adopt an efficient real-time content scheduling
algorithm running distributively on each peer to determine
the transfer path of the data packets. The algorithm quickly
generates a semi-optimal solution based on the peer’s cur-
rent local network status.

For each network link, when a data request is sent, be-
fore the corresponding data packet arrives, the network link
will be marked as “busy” and no more data request will be
sent along the network link. When a data packet arrives, the
network link state becomes “ready”, and then further data
request can be issued to the network link. The scheduling
step takes place when a data packet arrives at the peer and
the corresponding network link becomes “ready”.

In our framework, each data packet can be represented
as Px = {Dx, dsbx, reqx}, where Dx is the video data
chunk, dsbx is the current data status bitmap, and reqx is the
data request. We put the three fields together as one block to

918

reduce very small packets transfer so that the system can be
more efficient. To support smooth playback without jitter-
ing, all data packets should be fetched in the peer’s buffer
before it is supposed to be played. The target of the con-
tent scheduling step is to ensure that as many data packets
as possible can be retrieved from the neighbor peers before
their playback deadline. Also, the data transfer load should
be assigned to multiple links in a balanced manner.

For each peer, we design the data transfer scheduling
algorithm as follows:

Algorithm 1 Data scheduling algorithm on each peer
Input: the network links {l1...ln}, the corresponding delay time
{d1...dn}, the DSB set {dsb1...dsbn}, local DSB dsblocal

while true do
When packet Px = {Dx, dsb′i, reqx} arrives from link li:
Mark li as “ready”;
dsbi = dsb′i;
Save Dx, update dsblocal;
From dsblocal, find the packet preq whose playback waiting
time treq > dj ;
If reqx is valid, find data block Dreqx ;
Assemble the reply packet Presp = {Dreqx , dsblocal, req};
Send presp via link li; Mark li as “busy”
for all lj such that lj state is “ready” do

Calculate the weighted recent delay dj ;
From dsblocal, find the unavailable packet Preq whose
playback waiting time treq > dj , and is available from
lj ;
Send Preq = {null, dsblocal, req} to link lj ;
Mark lj as “busy”;

end for
end while

3.4. Resilience and robustness

In order to adapt to the changes of the network conditions,
we set a minimal connection number ncmin, which is the
minimal number of network link that a peer should main-
tain. When ncmin is larger, the peer becomes more robust to
neighbors’ leaving. In our implementation, ncmin is set to
four. Since the receiver-driven content transfer scheduling
algorithm schedules the data request according to the recent
state of the network link, the performance can well adapt
to the changes of the connection parameters. Moreover, the
data transfer load can be assigned to the connections ac-
cording to their status, thus making a good load balancing
among multiple connections. Normally the network links
do not need to work at the maximum rate, and high stress
can be avoided.

In real Internet environment, the probability that a lot of
peers simultaneously leave the overlay is very small. When
a peer leaves, its neighbors will be notified. Since each af-
fected peer has maintained at least ncmin network links, it

can still get content from the remaining network links. If
the network link number is less than ncmin, the peer will
try to establish new network links with others until ncmin is
reached again. This behavior ensures the system robustness
against peer leaving.

3.5. Overlay integrity

When there are articulation point in that graph, there is a
possible threat for the whole overlay be broken into pieces if
the peer on that articulation point exits the streaming frame-
work, as shown in Fig. 2.

Articulation
point

source

Articulation
point

source

Update connection

Update connection

Update connection

Fig. 2. Articulation point elimination

Each peer pi keeps measuring its distance disi to the
source peer. The distance is defined as the minimum num-
ber of hops between itself and the source peer. To calculate
its own disi, for peer pi, we have

disi
= min

nbj∈NBi

disj
+ 1,

where NBi is the set of neighbor peers of pi. The dis value
of the source peer is set to 0. We also note that the over-
head to calculate disi is well distributed to all participant
peers. Each packet between peers will be attached with the
distance value of the sender peer. We can see that the com-
putation overhead for each peer is very small.

From time to time, each peer contacts the lookup service
for a new peer list, and then tries to establish new network
links with those peers who have capacity for more network
links and whose dis value is small. This behavior brings in
two merits. First, the radius of the overlay will be within
control since all peers are trying to minimize its distance
to the source peer. Second, from a global point of view,
the whole framework keeps updating and repairing itself so
that the situation that the framework may break into several
disconnected component can be avoided.

4. EVALUATION

We have implemented a peer-to-peer streaming prototype
system based on the paradigm described in the previous sec-
tion. The system is deployed on Planet-lab [13] for perfor-
mance analysis. To evaluate the static performance of our

919

Fig. 3. Average data smoothness in different situations

framework, we measure the average data smoothness of all
peers. When peers join in the overlay, they would not leave
intentionally. Thus the peers form a relatively static over-
lay. The data smoothness a peer experiences during a time
period is defined as the ratio of the video data packets suc-
cessfully received before its playback time during the time
period. We run the experiment with different overlay sizes
of (50, 80, 100, 120, 150 peers) to observe the effectiveness
of our framework. The bit rate of the video stream broad-
casted to the peers is 450kb/s.

To test the resilience and robustness of the system, we
need to create a dynamic overlay. We perform a series of ex-
periments with the overlay sizes employed in the previous
experiment, but we let all the peers keep joining and depart-
ing the overlay from time to time. The mean sojourn time
a peer stays in the overlay is exponentially distributed, and
the peer will leave the broadcast and join again as a new-
comer. The mean of the sojourn time T is set to 50, 100,
200 and 300 seconds respectively. Such frequent peer join-
ing and leaving conditions result in a very dynamic overlay.
We then carry out a series of experiments with the same
overlay sizes as in the static performance test and obtain the
average data smoothness upon this dynamic peer overlay.

Fig. 3 shows the average data smoothness under differ-
ent overlay sizes and different T values. First, we can see
that the average data smoothness increases with the size in-
crease of overlay as expected. The more peers in the broad-
cast overlay, the better performance the peers will have.
Moreover, for all T values, the average data smoothness in-
creases with the overlay size. Second, our framework works
well under dynamic network condition. Even when T is
quite small, the average data smoothness is still satisfac-
tory. When T is smaller, the network can be regarded as
more volatile, which results in less data smoothness. Due

to the space limit, we only show the data smoothness re-
sult. More detailed experiment results will be shown in our
future publications.

5. CONCLUSION AND FUTURE WORK

In this paper, we investigate several performance issues in
peer-to-peer video streaming, and specify several require-
ments for peer-to-peer networks in supporting continuous
video streaming service. Then we propose a receiver-driven
data transfer scheme based on data availability information
and an efficient data transfer scheduling algorithm, which
optimizes each peer’s local performance and makes the whole
system resilient and robust. We implement and deploy the
prototype system on Planet-lab and obtain promising exper-
imental results.

In the future, we would further investigate the possible
video-on-demand applications based on the current system.
Efficient distributed lookup service is another possible topic
for future research.

6. ACKNOWLEDGEMENT

The work described in this paper was fully supported by the
following two grants of the Hong Kong Special Administra-
tive Region, China.(RGC Project No. CUHK 4205/04E and
UGC project No. AOE/E-01/99)

7. REFERENCES

[1] Naspter. http://www.napster.com.

[2] Gnutella. http://www.gnutella.com.

[3] Bittorrent. http://www.bittorrent.com.

[4] dc++. http://dcplusplus.sourceforge.net.

[5] emule. http://www.emule-project.net.

[6] D. A. Tran, K. A. Hua, and T. Do. Zigzag: An efficient peer-to-peer
scheme for media streaming. In Proceedings of the IEEE INFO-
COM’03, pages 1283–1292, 2003.

[7] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai. Dis-
tributing streaming media content using cooperative networking. In
Proceedings of NOSSDAV’02, pages 177–186, 2002.

[8] Y. H. Chu, S. G. Rao, and H. Zhang. A case for end systems multi-
cast. In Proceedings of the ACM SIGMETRICS, pages 1–12, 2000.

[9] M. Hefeeda, A. Habib, B. Botev, D. Y. Xu, and B. Bhargava.
Promise: peer-to-peer media streaming using collectcast. In Pro-
ceedings of the eleventh ACM international conference on Multime-
dia, pages 45–54, 2003.

[10] X. Y. Zhang, J. C. Liu, and B. Li. Coolstreaming/donet: A data-
driven overlay network for efficient live media streaming. In Pro-
ceedings of the IEEE INFOCOM’05, 2005.

[11] pplive. http://www.pplive.com.

[12] ppstream. http://www.ppstream.com.

[13] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawr-
zoniak, and M. Bowman. Planetlab: An overlay testbed for broad-
coverage services. In ACM SIGCOMM Computer Communication
Review, volume 33, pages 3–12, 2003.

920

