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ABSTRACT

Acoustic echo cancellation (AEC) is highly imperative for
enhanced communication in noisy environments such as a
car or a conference room. In this work, we present a dual-
structured AEC architecture that improves both the conver-
gence time and misadjustment of a conventional adaptive sub-
band AEC algorithm in high noise environments. In this ar-
chitecture, one part performs smooth adaptation while the
other part performs fast adaptation; a convergence detector
is implemented to facilitate switching between the fast and
smooth adaptations. We propose the momentum normalized
least mean square (MNLMS) algorithm for smooth adapta-
tion and we implement the NLMS algorithm for fast adap-
tation. The current architecture provides up to 3-4 dB echo
reduction improvement over a conventional adaptive subband
AEC algorithm and it helps minimize near-end distortion and
artifacts in the post-processed AEC output.

1. INTRODUCTION

Acoustic echo cancellation (AEC) removes the echo captured
by a microphone when a sound is simultaneously played thro-
ugh speakers located near the microphone [1]. Many high-
noise environments such as noisy conference rooms or lob-
bies and hands-free telephony in cars require effective echo
cancellation for enhanced communication. However, the pres-
ence of noise impedes the convergence of the AEC algorithm,
which leads to poor echo cancellation. Furthermore, nonlin-
ear post processing techniques such as the use of a center clip-
per result in noticeable distortion in the near-end speech.

Previous works on AEC in high noise focussed on com-
bined noise and echo reduction ([2] and references therein).
One of the approaches in [2] is to preprocess the microphone
signal through a noise suppression (NS) algorithm and per-
form adaptation using the far-end speaker signal that has un-
dergone the same NS operations as the microphone signal.
Although, this seems favorable, our experiments revealed that
this technique often distorts the echo signal, which hinders the
convergence properties of the AEC algorithm. Furthermore,
this technique requires perfect synchronization between the
microphone and the far-end speaker signals.

In this work, we are concerned with improving the AEC

system1 performance in high noise conditions. We propose a
new AEC architecture with the objective of maximizing the
echo cancellation of the AEC algorithm. Our motivation is
that by maximizing echo cancellation of the AEC algorithm,
we can make the post-processing stages milder, and thereby
minimize near-end distortion and artifacts. Furthermore, the
AEC algorithm makes more use of the signal information than
the post AEC algorithms as it takes into account both the
phase and the magnitude of the input signals; the post AEC
algorithms do not use the phase information of the signals.

A well known property of adaptive filtering algorithms is
the trade-off between adaptation time and misadjustment [3].
An effective AEC requires fast adaptation when the echo path
changes and smooth adaptation when the echo path is station-
ary. In this work, we develop a dual-structured AEC archi-
tecture where one part of the architecture performs fast adap-
tation, while the other part performs smooth adaptation. We
propose the momentum normalized least mean square
(MNLMS) algorithm for smooth adaptation and we perform
fast adaptation using the NLMS algorithm. We demonstrate
through our experimental results that our proposed architec-
ture provides up to 3-4 dB gain in echo cancellation over the
conventional adaptive subband NLMS based AEC algorithm.

This paper is organized as follows. In Section 2, we de-
scribe a conventional subband NLMS based AEC algorithm.
In Section 3, we describe our proposed AEC architecture.
Performance results are discussed in Section 4, and conclu-
sions are provided in Section 5.

2. SUBBAND AEC ALGORITHM

We consider a typical audio-conferencing environment in which
the far-end (speaker) signal x played out through the speak-
ers produces an echo at the microphone [3]. In addition to
the echo from the speakers, the audio signal y captured by
the microphone is also composed of the desired speech s and
background noise n. The AEC algorithm cancels the echo
from the microphone signal resulting in the output signal e.

In this paper, the conventional adaptive subband AEC al-
gorithm implements a subband NLMS algorithm. The signals
are sampled at 16 KHz and they are processed on a frame-by-

1The AEC system in this paper implies an AEC algorithm followed by
post-processing echo suppression and noise suppression algorithms.
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frame basis with each frame measuring 20 ms. To compute
the spectrum we use a 320-point modulated complex lapped
transform (MCLT) every 20 ms using a 40 ms window. The
MCLT is a particular form of cosine modulated filter-bank
that allows for perfect reconstruction. The frequency domain
spectrum is divided into 320 frequency bins with a bin sepa-
ration of 25 Hz.

3. PROPOSED AEC ARCHITECTURE

The AEC algorithm performs reasonably well under low noise
conditions; as the noise level increases, the adaptation is hin-
dered and the AEC performance deteriorates [3]. In addi-
tion, disturbance effects such as time-varying echo paths (due
to movements in a room) further reduce the AEC’s perfor-
mance. In such scenarios, one not only requires fast conver-
gence rates, but also low levels of misadjustment.

We propose a dual-structured AEC architecture in which
one part performs fast adaptation while the second part per-
forms smooth adaptation. At any given time, a convergence
detector is used to decide which of the two parts should be
used for the final AEC output signal. In the proposed archi-
tecture, we use the NLMS algorithm for fast adaptation and
the MNLMS algorithm for smooth adaptation. To explain our
architecture, we first describe the MNLMS algorithm.

3.1. Momentum Normalized Least Mean Square Algorithm
The MNLMS algorithm proposed in this paper is a variant
of the momentum LMS (MLMS) algorithm, which, was first
used in digital communication for high speed adaptive equal-
ization [4]; the MLMS algorithm was shown to provide faster
and smoother convergence than the LMS algorithm [5]. The
MNLMS algorithm corresponds to a second-order adaptive
algorithm in that two previous weight vectors are combined
at each iteration to obtain the updated weight vector [5]:

W(f, k + 1) = W(f, k) + 2µ
X(f, k)EH(f, k)

(E [‖X(f, k)‖2] + δ)
+α [W(f, k) − W(f, k − 1)] , (1)

where f is the frequency index, k is the frame index, µ > 0 is
the adaptation step-size, −1 < α < 1 is the momentum fac-
tor, X(f, k) = [X(f, k), · · · , X(f, k − L + 1)]T is the far-
end speaker signal vector with X(f, k) denoting the far-end
speaker signal for subband f and frame index k, L denotes
the regression model order, W(f, k) = [W1(f, k), · · · ,

WL(f, k − L + 1)]T denotes the weight vector, E denotes an
expectation, and δ > 0 is a regularization term. Also, E(f, k)
is the AEC output: E(f, k) = Y (f, k) − WH(f, k)X(f, k),
where Y (f, k) is the microphone signal and H denotes the
Hermitian operation. The third term in the summation of (1)
is called the momentum term, since by adding a fraction of
the weight increment of the previous time-step, we provide
momentum to the adaptive process. Note that for α = 0, the
MNLMS algorithm reduces to the NLMS algorithm.
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Fig. 1. Proposed dual-structured AEC architecture.

It was noted in our experiments that under high noise con-
ditions and α > 0, MNLMS performs poorly in comparison
with the NLMS algorithm. This is because the weight update
equation is largely disturbed by high background noise; any
error made during the previous weight update step is prop-
agated to the future time-steps due to the momentum term.
Interestingly, when α < 0, the MNLMS algorithm performs
better in terms of misadjustment than the NLMS algorithm
(when using the same step-size for both algorithms). This
is because by using a negative α, the update in weights of
the previous time-step are rendered unreliable (due to high
noise) unless there is a strong feedback in the future time-
step for this weight update. This builds a smoothing effect
in the MNLMS algorithm which makes it more resilient to
noisy conditions than the NLMS algorithm. This motivates
us to use the MNLMS algorithm for the smoothing part in
our proposed AEC architecture, which is described next.

3.2. Dual-Structured AEC Architecture

We propose a dual-structured AEC architecture as shown in
Fig. 1. In this architecture, two streams of AEC algorithms
operate in parallel. The upper stream implements the NLMS
algorithm for fast adaptation while the lower stream imple-
ments the MNLMS algorithm for smooth adaptation; a con-
vergence detector is implemented to switch between the two
streams. The advantage of this architecture is that we can
switch between fast and smooth adaptation depending on room
conditions. Note that both streams operate independently, i.e.,
there is no exchange of information between the two streams.

It was found through experiments that the improvement in
AEC performance of the lower stream over the upper stream
was dominated by adaptation in the frequency bins 3 − 82
only. Thus, in our architecture, we operate the lower stream
over only the frequency bins 3 − 82. This helps reduce the
computational cost as we do not have to implement a full-
band AEC algorithm in the lower stream.

At each frame k, the AEC output signal e1 of the lower
stream is processed by a convergence detector (described in
Section 3.3) to determine if the echo canceler of the lower
stream has converged. If convergence is detected, we use e1

for the bins 3−82 of the final AEC output signal e, otherwise
the bins 3 − 82 of the AEC output signal of the upper stream
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(i.e., e2) are used. The frequency bins 83-282 of e always
correspond to e3 i.e., to the frequency bins 83-282 of the AEC
output signal of the upper stream.

To further improve the performance of the AEC system,
we implement the AEC algorithm of the upper stream with
two step-sizes, i.e. µ1=0.35 and µ2=0.2, that were chosen
through rigorous experimentation with real data. We use µ1

for fast adaptation and µ2 when smooth adaptation is required
but the MNLMS algorithm has not converged. The decision
to switch between µ1 and µ2 is made using a separate conver-
gence detector that is built into the AEC algorithm of the first
stream. The AEC algorithm of the lower stream implements
an MNLMS algorithm with a step-size of µ2.

To summarize, we begin the adaptation process with the
AEC algorithm of the upper and lower streams operating with
step-sizes of µ1 and µ2, respectively. Initially, the AEC al-
gorithms of both the streams will be in the learning phase
(i.e. not converged). However, as the upper stream converges
faster than the lower stream, we combine e2 and e3 to obtain
e during the initial phase. Furthermore, upon convergence of
the AEC algorithm in the upper stream, µ1 is reduced to µ2

to perform smooth adaptation. When the AEC algorithm in
the lower stream converges, e1 and e3 are combined to obtain
e. Finally, whenever a change in the echo path is detected,
we switch to the faster adaptation stream and continue using
it until the AEC algorithm in the lower stream reconverges.

3.3. Convergence Detector
An important component of our proposed architecture is to be
able to switch between fast and smooth adaptation depend-
ing on the convergence conditions of the AEC algorithm. To
achieve this, we use the orthogonality property of adaptive
algorithms: when the echo canceler has converged, the AEC
output signal must be orthogonal to the speaker signal [3].
This property was used to develop a double talk detector in
[6]. We adopt the double talk detection algorithm of [6], but
use it only as a convergence detector. Further, instead of oper-
ating the convergence detector in the time domain, we operate
it in the subband domain; this is explained next.

The cross correlation between the AEC output E1(f, k)
of the lower stream at frame k and X(f, k − i) at frame k − i
(i = 0, · · · , L − 1) for frequency bin f is defined as

ρi(f, k) =
P i

XE1
(f, k)

P i
X(f, k)PE1(f, k)

, (2)

where PE1(f, k) and P i
X(f, k) are the long term correlations

of e1 and x, respectively, and P i
XE1

(f, k) is the long term
cross correlation of x and e1; they are updated using an expo-
nential weighting recursive algorithm [6]:

P 2
E1

(f, k) = λP 2
E1

(f, k − 1) + (1 − λ)|E1(f, k)|2
|P i

X(f, k)|2 = λ|P i
X(f, k − 1)|2 + (1 − λ)|X(f, k − i)|2

P i
XE1

(f, k) = λPXE1(f, k − 1) + (1 − λ) ·
X(f, k − i)EH

1 (f, k). (3)

Here, λ is an exponential weighting factor generally set as
0.95 < λ ≤ 1 for slowly time varying signals. Using (2),

we define the average cross correlation (ACC) as ρ̄(f, k) ∆=
1
L

∑L−1
i=0 |ρi(f, k)|. For reliable convergence decisions, the

ACC is computed only for the frequency bins 13-82 (325 Hz
- 2.05 KHz) where speech signal is dominantly present.

At each frame k, we compare ρ̄(f, k) to a threshold ρTh

for f=13,11,· · · ,82. If the inequality ρ̄(f, k) ≤ ρTh is met
for more than half of the total frequency bins considered (i.e.,
70/2=35), we declare that the AEC has converged, otherwise
we declare that either the AEC has not converged or the echo
path has changed. The convergence threshold is typically set
to be slightly larger than ρ̄(f, k) in its steady state [6].

4. EXPERIMENTS AND RESULTS

We tested the performance of our proposed AEC architecture
on real data collected from a small office-room (10x8x10ft).
The data was recorded at 16 KHz sampling rate. To evalu-
ate the AEC performance quantitatively, we consider only the
single talk case; the double talk case was evaluated through
listening tests. We analyzed the algorithm’s performance quan-
titatively on the basis of echo return loss enhancement (ERLE)

in dB, which is given as, ERLE(k) = 10 log10

[
E{y2(k)
E{e2(k)}

]
.

For the single talk case, the far end speaker signal was first
recorded under low noise conditions; at 16.5 s (k = 825)
movements were introduced in the room to cause a change
in the echo path. Office background noise was collected and
then synthetically added to the far-end signal to produce the
microphone signal at an echo-to-noise ratio of 7 dB. After
processing the microphone signal through the AEC, the back-
ground noise was subtracted from the AEC output signal and
the result compared with the noise-free microphone signal.
This was done to evaluate the true performance of the pro-
posed architecture unhindered by noise. Thus, the terms y(k)
and e(k) in the ERLE formulation correspond to the noise-
free microphone and AEC output signals, respectively.
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Fig. 4. ERLE difference between the the proposed architec-
ture and the conventional subband adaptive AEC algorithm
on the AEC output in room noise.

In this work, we use µ1 = 0.35, µ2 = 0.2, and α = −0.9.
Fig. 2 depicts the ERLE curves for the NLMS (with µ1 and
µ2) and the MNLMS (using µ2 and α) algorithms. It can be
seen that the adaptation is fastest with NLMS,0.35, followed
by NLMS,0.2, and MNLMS,0.2. However, as we approach
k = 500, the ERLE is largest for MNLMS,0.2, followed by
NLMS,0.2, and NLMS,0.35.

Fig. 3 compares the real part of the first tap weight for the
NLMS and MNLMS algorithms to demonstrate the difference
between the two adaptive algorithms. It can be seen that the
tap weight for the NLMS algorithm fluctuates more rapidly
than that for the MNLMS algorithm. This suggests that the
MNLMS algorithm is more resilient to noisy conditions than
the NLMS algorithm. The difference in evolution of the tap
weights for the MNLMS and NLMS algorithms is the primary
reason to operate the AEC algorithms in the upper and lower
streams independently for frequency bins 3 − 82

We compare the results of our proposed AEC architec-

ture with that of a conventional adaptive subband AEC algo-
rithm described in Section 2 using a step-size of 0.35. Fig. 4
shows the ERLE difference on the AEC output between our
proposed architecture and the conventional AEC algorithm.
The dashed line indicates the switching decisions along time;
a value of 1 indicates that the upper stream is processed while
a value of -1 indicates that the lower stream is processed.

Initially, the AEC algorithms in both streams are converg-
ing; however, as the upper stream converges faster, we use
its output as the final AEC output (during frame indices 1-
363). Furthermore, as the conventional AEC algorithm also
implements a step-size of 0.35, its output is equivalent to the
output of our parallel AEC architecture. As a result, we do
not see an ERLE gain between our AEC architecture and the
conventional AEC algorithm. At about k = 321, the AEC al-
gorithm of the upper stream converges; consequently, the step
size of the AEC is changed to 0.2 for smoother convergence.
This results in an ERLE gain between the parallel architec-
ture and the conventional AEC algorithm during the frame
indices 321 − 363. At k = 364, the lower stream also con-
verges. At this stage, we switch to the lower stream i.e., we
use e1 for frequency bands 3−82 of e. This leads to an ERLE
gain of up to 4 dB over the conventional AEC algorithm. At
around k = 825, there is a movement in the room, which is
detected by the convergence detector. At this time, we shift
to the upper stream. Eventually, when the AEC in the lower
stream reconverges, we shift back to the lower stream. Thus,
the parallel architecture helps to obtain both fast adaptation
and low misadjustment, which results in the improved per-
formance of our proposed architecture over the conventional
subband adaptive AEC algorithm.

5. CONCLUSIONS

A new dual-structured architecture for the AEC system is pro-
posed to improve both the convergence time and misadjust-
ment of a conventional AEC algorithm in high noise envi-
ronments. The architecture provides up to 3-4 dB improve-
ment in echo reduction over the conventional subband adap-
tive AEC algorithm for a small computational overhead.
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