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ABSTRACT

We consider transfer of video frames over a time-varying wireless
channel. When the channel is good, the transmitter can send frames
at a higher rate than the receiver can consume them via playout. In
that case, we introduce the idea of admitting new frames even when
the receiver buffer is full, by selectively evicting frames already in the
buffer; we can also control the playout rate, so as to optimize the trade-
off between video distortion and the time to freeze when the channel
turns bad and frames arrive at a lower rate than should be played out.
The decision/control problem of whether to admit a new frame, which
already stored one to evict to accommodate the new one, and at what
rate to play out frames is formulated within a dynamic programming
framework, and an interesting connection to the Knapsack problem is
made. Application of the idea in a relevant simple system shows sig-
nificant performance gains, indicating that it is a promising approach
for improving video delivery performance over challenging wireless
channels.

1. INTRODUCTION

Video delivery over wireless links is a theoretically interesting and
practically important problem which has received considerable atten-
tion in recent years. From the application layer, the wireless link may
often appear as a ‘reliable’ channel but with time-varying through-
put. This time-varying throughput can lead to buffer underflow and
the associated highly undesirable video freeze at the receiver, when
the throughput drops below the receiver’s consumption rate for a dura-
tion longer than what can be compensated for by the receiver’s buffer.
A variety of approaches have been proposed to overcome this prob-
lem, including sender-driven rate-distortion (R-D) optimized stream-
ing where the sender intelligently selects which packets to transmit to
minimize the distortion at the receiver subject to the available through-
put [1], [2]. Another approach is the receiver-based adaptive media
playout (AMP), where the playout rate at the receiver is reduced when
the buffer begins to underflow in order to reduce the probability of
underflow [3], [4]. Joint R-D optimized packet scheduling, and trans-
mitter power control at the sender, as well as (content-aware) adaptive
playout at the receiver has been studied in [5].

In this paper, we examine the case of a simple transmitter, and a
receiver which has a limited buffer size and simple decoder which only
allows the ability to play or freeze. We propose a receiver-based opti-
mization framework for maximizing the time to receiver underflow and
associated undesirable video freeze by pre-emptively evicting frames
from the receiver buffer in an R-D optimized manner in order to receive
and store additional frames which would increase the playout time.

To put the control/decision dilemma into perspective, consider the
following scenario. When the channel is good the receiver may be able
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to transfer packets to the receiver at a much higher rate than the latter
can consume them. In that case, after the receiver buffer fills up, the
standard approach is to stop the transmitter from sending more pack-
ets that would be dropped due to a full receiver buffer. We examine
an alternative idea, as follows. When the channel is good, the trans-
mitter may selectively keep sending frames/packets even when the re-
ceiver buffer is full. The receiver may then elect to keep a received
frame and evict one already in its full buffer to keep its newly admit-
ted one. The eviction/admission decision is done with an eye towards
minimizing the distortion and maximizing the time to freeze when in a
subsequent phase the channel turns bad and the receiver buffer drains
as new frames/packets arrive sparingly. For example, a ’naive’ way
to evict existing frames in a full buffer to accommodate new ones is
to substitute every other existing frame with a newly arrived one and
play each frame twice (hence, reduce the playout rate to half the nor-
mal one). A proper way to formulate the decision/control dilemma of
whether to admit a new frame, which stored one to evict to accommo-
date it, and at what rate to play out frames in the buffer is within a
dynamic programming framework which can lead to a systematic way
for obtaining the optimal control and deriving justified practical heuris-
tics. An interesting connection to the Knapsack problem can also be
established, which could find applications to other video transmission
optimization scenarios.

This paper continues in Section 2 by describing the general model
and problem formulation, followed by presenting the optimal solution
achievable by a dynamic programming formulation. A special case of
the general framework is then presented, for the case of H.264 coded
video, which demonstrates the tradeoff between distortion and freez-
ing.

2. GENERAL MODEL AND PROBLEM FORMULATION

In this section we present a novel modeling framework for receiver
based optimization and provide the optimality formulation. We em-
bed the problem within a Markov decision process framework and use
dynamic programming to compute the optimal control.

2.1. System Description

We consider a system shown in Fig. 1, which is comprised of a trans-
mitter (Tx) and a receiver (Rx) communicating over a wireless link.
Time is slotted and is indexed by t = 0, 1, 2, 3, .... We assume either
the entire video sequence of N frames is pre-stored at the transmitter
or arrives to the transmitter through a backbone access network. For
the latter case, we assume the backbone access network is not the bot-
tleneck. Each frame has size sn in bits. The receiver is equipped with
a buffer of size B, where received packets are queued up while waiting
to be played out.

The condition of a wireless channel varies with time. This is typi-
cally due to both the attenuations in the received signal strength (path-
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Fig. 1. Receiver based Optimization

loss, shadowing and fast fading), the varying interference levels caused
by other users, and the mobility of nodes. Without loss of generality,
we model the wireless channel as a Markov chain with transition prob-
abilities qij ; in channel state i, the bandwidth available to the video
stream is Ri. The reasoning behind this model is the following. Fast
fading, slow shadowing, path loss and interferences all affect the signal
to interference/noise ratio (SIR); in turn, the SIR dictates the physical
transmission rate and packet error rate, thus the channel throughput.
Assuming that the physical and MAC layers use coding and retrans-
missions to combat channel variations, the wireless channel appears
to the application layer as error-free but with time-varying throughput.
The throughput Ri in state i can be calculated as Rp

i (1−PER), where
the Rp

i is the physical channel rate after the coding, and PER is the
packet error rate with the corresponding codes; this is reasonable if the
channel varies slower than a packet’s transmission time, which is the
case for low mobility or in-home environments.

We assume that the transmitter has no knowledge of the content
of the video frames. This is common in many practical scenarios. For
example, the stream may be encrypted or the transmitter has no capa-
bility to access the MPEG/H.264 packet headers. At each time slot, the
transmitter transmits as many video frames as the channel throughput
allows. We assume at the end of each time slot, the receiver sends the
reception acknowledgements to the transmitter, indicating the results
of the transmission. We further assume these acknowledgements are
small in size, do not consume any channel throughput, and are received
with no errors.

At each time slot, the receiver plays out one frame stored in the
buffer. If the frame to be played out, say frame n, is not available,
the transmitter will use error concealment techniques to estimate the
missing frame. One such technique is to reuse the previous frame. Due
to the absence of frame n, the video quality suffers distortion dn. We
further assume distortion values are additive across multiple missing
frames. This is a reasonable assumption if the losses are sparse. If the
receiver buffer runs empty, the receiver will terminate the playout and
proceed to the rebuffering process. We denote the time at which the
receiver buffer runs empty before all N video frames have been played
as the time to freeze Tf . The viewer would like to view the entire
video stream without any playout freeze. However, given the limited
buffer space and time-varying channel throughput, playout freeze may
be unavoidable. One solution is to implement receiver buffer control
as mentioned earlier.

In this paper we propose to allow the receiver to drop frames that
were previously stored in the buffer and replace them with newly ar-
rived frames. Combined with error concealment techniques, this con-
trol extends the actual playout duration of the frames in the buffer. For
example, suppose the buffer can store 6 frames. We can either store
frames 1 to 6, offering a playout duration of 6 frame periods. Or we
can store frames 1, 3, 5,..., 11, and use error concealment techniques
to recover the missing frames. This effectively offers playout duration
of 12 frames, thus reducing the risk of playout buffer underflow. How-
ever the video quality suffers in the latter case. Clearly there exists a
trade-off between the distortion incurred due to frame loss and the re-
duction in buffer underflow risk. The latter can be measured as time to
freeze Tf . This trade-off can be explored by implementing the receiver

buffer control.
In the case that new frames arrive and the buffer has enough space

to store them, the decision is simple and the new frames are added to
the buffer. However, if the buffer is full, the receiver must make a deci-
sion: ignore the incoming frames and wait for them to be retransmitted
later or evict some frame(s) already in the buffer in order to allow for
the addition of the incoming frames. Clearly, eviction incurs distortion
in video quality. However, eviction also extends the playout time of
the video frames stored in the buffer. Given a limited buffer size at
the receiver, this may be necessary to maximize the time to freeze. If
the channel enters a deep fade, connectivity will be lost, the buffer will
eventually be depleted and the playout will freeze. By extending the
playout time of the frames stored in the buffer, the receiver extends the
length of time of a deep fade it can avoid freezing over.

On one hand the receiver wants to playout the video stream with
the least amount of distortion, which means playing every single re-
ceived frame. On the other hand, the receiver wants to maximize the
time to freeze, which means evicting frames to extend the buffer’s play-
out time. We seek the optimal buffering policy to jointly optimize these
goals.

2.2. Discussion of Costs

In order to explore the trade-off described in Section 2.1, we define
the performance cost functions here.

Distortion Costs. The distortion cost dn is incurred if frame n
is dropped by the receiver. Assuming additive distortion, a minimum
distortion of 0 corresponds to all frames 1, 2, 3, ..., N being played out
and a maximum distortion of

�
n∈(1,N) dn corresponds to all frames

being dropped. The distortion associated with each frame is transmit-
ted to the receiver, e.g., as part of the packet header as described in
[6].

Time to Freeze. We define Tf as the time after the start of playout
at which the receiver buffer hits empty and the playout must freeze.
Then at time slot Tf , a cost Φ(Tf ) is included to reflect the desire
to maximize the time to freeze. Φ(Tf ) is nonnegative function that
is decreasing in Tf . Recalling that N is the number of video frames
to be transmitted, if Tf = N , then the buffer empties after all video
frame slots have passed and Φ(N) = 0. Beyond these two general
properties, we do not assume any specific structure for the function
Φ(Tf ), which can be adapted depending on the system model.

2.3. System State and Optimal Control

The objective is to receive and playout video frames while minimizing
the overall cost incurred in the process. The system state to be tracked
in each time slot is:

(i, m, p) (1)

where, i is the channel state which specifies how many frames can be
transmitted in the time slot, m is the index of the next video frame to
be transmitted, and p ∈ P is an indicator vector of which video frames
are stored in the receiver buffer. pn = 1 if frame n is in the buffer and
pn = 0 otherwise.

At each time slot, the receiver plays out and removes the played
frame from the buffer. The control applied in each time slot is p̃–the
new buffer state. If no frame is played out and no new frames are added
to the buffer, either because the transmitter did not send any frames or
because the receiver chooses to ignore the transmitted frames, then
p̃ = p. In the other case, p̃ = p except for the following elements: If
frame n was played out, then p̃n = 0 �= pn. If Ψ is the set of frames
that are evicted from the buffer, p̃n = 0, ∀n ∈ Ψ. Likewise, if Ω is the
set of frames that are added to the buffer, p̃n = 1, ∀n ∈ Ω.

Given this formulation, the system simply becomes a controlled
Markov chain, and hence, we can develop a Dynamic Programming
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recursion to compute the optimal control. Let J t(i, m, p) be the cost-
to-go, that is the minimum expected cost incurred until termination,
given that the optimal control is used, t video frame time slots have past
and the current state is (i, m, p). J t(i, m, p) satisfies the following
functional recursive equations, with t ∈ {1, 2, 3, ..., N − 1}, i ∈ I,
p ∈ P \ 0 (does not hold when the buffer is empty):

J t(i, m, p) = dtpt + pt min{
�

j

qijJ
t+1(j, m, pt−),

min
n≤i,p̃∈P̃

�
j

qijJ
t+1(j, m + n, p̃)}+

(1 − pt) min{
�

j

qijJ
t+1(j, m, p),

min
n≤i,p̃∈P̃

�
j

qijJ
t+1(j, m + n, p̃))}

(2)

where P̃ is the set of possible buffer states given the previous buffer
state P, the playout of frame t, and the arriving frames m, m+1, ..., m+

i. pt− denotes the buffer state minus the tth frame.

The first minimization corresponds to when frame t is included in
the buffer and is first played out. Then the decision is to either ignore
the incoming frames and the system evolves to state J t+1(j, m, p̃) or
to include a subset, of size n, of the arriving frames, [m, m + i], af-
ter evicting some existing frames making the system evolve to state
J t+1(j, m + n, p̃). Likewise, the second term which is preceded by
(1 − pt) corresponds to when frame t is not in the buffer for playout.
The decisions are analogous to when it is included.

We must also consider the boundary conditions.

J t(i, N, p) =
�

j

qij{ptJ
t+1(j, N, pt−)+

(1 − pt)J
t+1(j, N, p)}

(3)

J t(i, m, p = 0) = Φ(t) (4)

It can be shown that given the current buffer state and the incoming
video frames, the optimal eviction policy is given by the 0/1 Knapsack
problem [7]. Given the subset, F, of data frames, we must choose
which frames to put into the limited capacity buffer and which not to
choose. The knapsack problem will give the optimal solution of which
frames should be included in the buffer to minimize the distortion of
the subset F. Minimizing this distortion corresponds to minimizing the
playout distortion. This makes sense because if a frame will not fit in
the buffer, it will never be played out and its distortion will be incurred
at playout. By using the knapsack solution to optimize the contents of
the buffer at each time slot, the playout will also be optimized. For
a reminder, the knapsack solution is shown. We number the available
frames from 1, 2, ..., M . Let Ab(i) be the optimal solution given a
buffer with capacity b and we only allow inclusion of frames 1, 2, ..., i.
If the knapsack size is B, the optimal solution is given by AB(M).
Then:

Ab(i) =

�
0, i = 0 or b = 0;
min{Ab−si(i − 1) + di, Ab(i − 1)}, otherwise.

(5)

Let KB(i, m, p) be the optimal knapsack solution given the re-
ceiver buffer state p and the arriving frames given by m and i. Then

the DP recursion from Eqn. 2 becomes:

J t(i, m, p) = dtpt + pt min{
�

j

qijJ
t+1(j, m, pt−),

min
n≤i

�
j

qijJ
t+1(j, m + n, KB(i, m, pt−))}+

(1 − pt) min{
�

j

qijJ
t+1(j, m, p),

min
n≤i

�
j

qijJ
t+1(j, m + n, KB(i, m, p))}

(6)

2.4. Special Case

We look at a special case of our general framework, which allows us to
highlight fundamental tradeoffs and properties of the general problem.
In particular, in order to focus on the relationship between distortion
and time to freeze, we consider the following problem setup. We as-
sume that all frames have the same size: sn = k for all n. In this case,
the 0/1 knapsack solution is equivalent to the greedy solution. With
this assumption, our eviction policy can be reduced to the eviction of
frames with the smallest distortion cost. We also assume that all frames
transmitted at each time slot are acknowledged at the end of the time
slot via an error-free control channel.

To limit the search space we constrain the dropping pattern so that
we never drop 2 consecutive frames. We measure distortion in the
mean-squared error sense. Each frame has a unique distortion value
which is calculated by incrementally dropping frames, decoding the
modified video stream and comparing it to the original video con-
tent. Due to the limited dropping patterns, there may be instances
when newly arriving frames cannot be admitted into the buffer. In
this case, the channel resources are wasted. To fully utilize resources,
we implement a DP-based heuristic. When the channel is good, the
next frame to be played out is missing, and the receiver cannot evict
frames to admit newly arriving ones, the receiver will request the miss-
ing frame from the transmitter. Otherwise, it will follow the optimal
solution given by the DP. This addition will decrease the total number
of dropped frames.

In order to closely examine the tradeoff between distortion and
time to freeze, we include a weight W on the terminal cost J t(i, m, p =
0) = WΦ(t). By increasing W , we place more value on extending the
playout time and allow for more distortion to be incurred.

Given these constraints, the optimality equation (2) can be dramat-
ically simplified. Due to the limited space, we neglect it here.

For these simulations we have a receiver buffer size of 10 frames
and a total of 200 media frames to be transmitted. The foreman video
sequence is pre-encoded using H.264/MPEG-4 AVC with a single lead-
ing I frame followed by 199 P frames. Missing frames are estimated
using previous frame error concealment. Our time-varying channel al-
ternates between allowing 2 or 0 frames to be transmitted in each time
slot. When the channel is in the good state, the transmission rate is
twice the playout rate; hence, the system can quickly fill-up the buffer
when the channel is in a good state. The steady-state probabilities
of being in each channel state is 1

6
for 0 frames and 5

6
for 2 frames.

The expected duration of being in the bad and good states is 4 and 20
frames, respectively. In this experiment we examine the performance
of the optimal policy, computed over 1000 realizations of the chan-
nel, as we vary W to examine the range of tradeoffs between incurred
distortion and time to first freeze.

Fig. 2 shows the tradeoff between distortion and extending playout
time. Observe that as the time to buffer underflow increases, distortion
is increased. Evictions must take place in order to extend playout time,
but evictions also lead to incurred distortion due to the missing frames.
If no control is used the expected time to playout freeze is approxi-
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Fig. 2. Distortion vs. Time to Freeze tradeoff

mately 125 frames, as identified by the circle. By intelligently evicting
frames the time to freeze can be significantly increased, at the cost of
incurred distortion from the missing frames.

We also looked at a greedy heuristic to mimic the performance of
the DP algorithm. At each time step, the receiver tries to play out the
next frame. If it is available and the channel is good we will admit
new frames (and evict others) only if the admitted frames have higher
associated distortion than the frames to be evicted from the buffer. If
the next frame is not available and the channel is good, we request the
missing frame as well as the next frame that would normally be trans-
mitted. If it is not available and the channel is bad we incur distortion.
Note that unlike the DP-based algorithm, there is no limit on the evic-
tion patterns. The operating point of this policy are denoted by an
asterisk. This policy clearly outperforms the no control policy and per-
forms nearly as well as the DP-based algorithm. It may seem that this
greedy policy should have the longest time to freeze and lowest prob-
ability of freezing as it is frequently admitting and evicting frames.
Despite the limits on eviction in the DP-based algorithm, it can extend
the playout time even more than the greedy algorithm which suggests
that a DP-based algorithm with no limits will easily outperform this
algorithm.

In the next set of experiments, rather than terminating service upon
underflow, the receiver rebuffers until it is full. In this scenario, the
receiver will playout until the very last media frame has been transmit-
ted and reaches the front of the receiver queue. Instead of trading off
between distortion and time to first underflow, the tradeoff is now be-
tween distortion and the probability of playing out the entire sequence
without freezing. Note that the receiver policy that is implemented is
given by the DP solution solved by Eqn. 2. This is not the optimal pol-
icy for this scenario as we would have to introduce costs to represent
the frequency of underflow into the original DP formulation. However,
using our solution is a reasonable heuristic to explore these tradeoffs.

Fig. 3 shows the tradeoff between distortion and the probability
of not freezing. If we allow for high probability of freezing during
playout, MSE distortion can be diminished. Freezing is also a form of
distortion and certain viewers may prefer MSE distortion to increase
in order to avoid playout freezes. We can see that the policy given by
no control, as shown by the circle, has no incurred MSE distortion but
is very likely to freeze. Depending on the relative importance between
MSE distortion and freezing distortion, the receiver can optimize its
policy to maximize the viewer’s quality of service despite the time-
varying wireless channel. In fact, we can increase the probability of not
freezing from 35% with no control, to 80% by intelligently dropping
only 7% of video frames.

By allowing for distortion to be incurred during video playout,
playout time can be extended and freezing can be minimized. 200
video frames corresponds to just over 6.5 seconds of video playout.

Fig. 3. Distortion vs. Probability of not freezing during playout.

So even with this challenging wireless channel and small buffer at the
client, the proposed algorithm allows us to intelligently tradeoff distor-
tion to increase the probability of playing out the entire video stream
without freezing, and to perform this tradeoff in an optimized man-
ner. This is in contrast to the no control case, where the probability of
freezing is about 65%.

The aforementioned simple and special case of the general frame-
work, using H.264 coded video, illustrates the tradeoff between distor-
tion and freezing which can be achieved by receiver-based optimiza-
tion.

3. CONCLUSION

This paper proposed a receiver-based technique for maximizing the
time to receiver underflow and undesirable video freeze by pre-emptively
evicting frames from the receiver buffer in an R-D optimized manner.
This leads to a tradeoff between reduced probability of freezing ver-
sus incurred distortion that results from the evicted frames. The opti-
mal policies to achieve this tradeoff are determined using a dynamic
programming formulation which solves a knapsack problem at the re-
ceiver at each time step. Determining the optimal solution is complex
because of the large state space, and therefore this submission includes
illustrative examples of the optimal performance for relatively small
receiver buffer sizes. Future directions may include the design of justi-
fied low-complexity heuristics for achieving high-quality (though sub-
optimal) performance for arbitrary receiver buffer sizes.
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