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ABSTRACT

In this paper, we consider the problem of optimal self-embed-
ding Lapalcian data hiding for the state-dependent channels.
In particular, we propose to decompose the Laplacian data
using the paradigm of parallel source splitting. Experimen-
tal validation confirms the efficiency of the proposed ap-
proach.

1. INTRODUCTION

One of the main requirements addressed to various data hid-
ing technologies consists in the maximization of the achiev-
able rate of hidden information transmission. To satisfy this
requirement an optimal solution to the host interference can-
cellation problem should be found. The related issue was
extensively studied in digital communications for the case
of state-dependent channels. The main obtained results are
due to Gel’fand and Pinsker [1] who considered this prob-
lem in the general setup of discrete memoryless channels
and by Costa for a particular case of the Gaussian memo-
ryless channels [2] and it was demonstrated that in the lat-
ter case it is possible under some constraints to achieve the
transmission rate equivalent to the capacity of the additive
white Gaussian (AWGN) interference free channel.

Another challenging research problem concerns optimal
communications through the state-dependent channels (or
estimation from the channel output) of the conveyed state
information. In addition to the data hiding, where besides
mentioned capacity approaching demands, host recovery can
also be required in some particular applications [3]. This as-
pect is getting more importance due to the necessity of up-
grading and rehauling analog communications systems with
digital transmission systems in broadcasting of audio, im-
ages and video [4, 5].
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Theoretical fundamentals of the optimal design of the
protocols targeting the highest quality reception of the host
was recently considered by Sutivong et al. [6]. Their analy-
sis was restricted to the Gaussian memoryless setup and it
was demonstrated that a simple uncoded transmission leads
to the optimal system performance in terms of host estimate
distortions contrarily to the Costa setup [2].

Since the results in [6] cannot be applied to practice
in a straightforward way due to the multiply reported mis-
matches between the assumed and realistic stochastic mod-
els [7, 8], we formulate the main goal of this paper to an-
swer to the following question: what is the host estimation
accuracy in case it has some non-Gaussian distribution?

The paper is organized as follows. In Section 2 prob-
lem formulation of the host estimation is presented. Some
aspects of statistical modeling of Laplacian data are consid-
ered in Section 4. The analysis of the non-stationary trans-
mission of the i.i.d. Laplacian data is performed in Section
5. Finally, Section 6 concludes the paper.

Notations We use capital letters to denote scalar random
variables X and corresponding small letters x to designate
their realizations. Vector random variables and their real-
izations are denoted as XN and xn, respectively, where the
superscript N is used to designate length-N vectors.We use
X ∼ p(x) to indicate that a random variable X is distrib-
uted according to p(x). The variance of X ∼ pX(x) is
denoted by σ2

X . Calligraphic fonts X denote sets and |X |
denotes the cardinality of X . The set of postive real num-
bers is denoted as R

+. IN denotes the N × N identity ma-
trix. Watermark-to-image ratio (WIR) is defined as WIR =

10 log10
σ2

W

σ2

X

and the watermark-to-noise ratio (WNR) is des-

ignated as WNR = 10 log10
σ2

W

σ2

Z

where σ2
X , σ2

W , σ2
Z are the

variances of host, watermark and noise, respectively.

2. PROBLEM FORMULATION

A message m (Figure 1) that is uniformly distributed over
M ={1, 2, ..., |M|}, |M| = 2NR, is encoded with rate
R = 1

N
log2 |M| using side information XN ∈ XN about

the host and is sent to the channel. The channel produces the
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output according to p(yN |wN , xN ) =
∏N

i=1 p(yi|wi, xi).
The decoder, given the channel output Y N , is attempting at
both estimating m̂ that was sent and recovering X̂N .

The rate-distortion pair (R,D) is said to be achievable if
there exists such a (2NR, N ) code defined by the following
encoder mapping WN :

{
1, 2, ..., 2NR

}×XN → WN and

decoder mappings m̂ : YN → {
1, 2, ..., 2NR

}
and X̂N :

YN → X̂N that 1
2NR Σ2NR

m=1Pr
[
M̂ �= m|M = m

]
→ 0 as

N → ∞, E
[
dN (XN , X̂N )

]
≤ D, where dN (XN , X̂N ) =

1
N

ΣN
i=1d(xi, x̂i) and d(x, y) : X×Y → R

+ is the distortion
function.

Fig. 1. Generalized communications framework via the
state-dependent channel.

The detailed analysis of the Gaussian formulation of this
setup can be found in [6].

A particular case of the above formulated problem when
R = 0 and all data are assumed to be i.i.d. Gaussian is
presented in Figure 2.

Encoder Decoder
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��N
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Fig. 2. Host estimation in the state-dependent Gaussian
channel.

This setup was analyzed in [6] and it was proved that
the minimum achievable and tight distortion estimate of the
host X̂N can be obtained using uncoded transmission, i.e.,

WN = αXN , α =
√

P
σ2

X

, and decoder, given Y N =

WN + XN + ZN , performs the MMSE estimation: X̂N =
σ2

X
+
√

Pσ2

X

(σX+
√

P )2+σ2

Z

Y N with the average distortion D given by:

D =
σ2

X
σ2

Z

(σX+
√

P )2+σ2

Z

. (1)

3. STOCHASTIC MODELING OF THE HOST DATA

As it was already pointed out in Section 1, the considered
Gaussian setup has a restricted practical application due to
the stochastic properties of real-world data and necessity to
adopt the decoder to the particular host statistics.

The main goal of this section is to evaluate the opti-
mal channel state communications system performance de-
signed according to the setup presented in Figure 2 when

XN = [x1, x2, ..., xN ] is i.i.d. Laplacian, i.e., p(xi) =
0.5λe−λ|xi|, where λ is the distribution parameter. As the
motivation for the model selection, we used its simplicity
and accuracy of global statistics approximation of the coef-
ficients in wavelet transform domain successfully exploited
in lossy image compression [9] and denoising [10].

Since the problem under analysis can be also considered
as a source-channel coding problem for Wyner-Ziv setup
and Gel’fand-Pinsker problem [11], one can think of the
communications protocol design based on the separation
principle. In such a protocol, the source coding rate ob-
tained using principles of source coding with side informa-
tion available at the decoder [12] should be not higher than
the channel rate in the Gel’fand-Pinsker protocol.

However, the adaptation to the particular case of the
considered channel and host statistics has been not performed
yet. The main difficulty concerns the source coding part
since there is no close analytical solution for the Wyner-Ziv
rate-distortion function of the Laplacian source. This situ-
ation is the opposite one to the channel coding capacity es-
timation problem where it was recently shown in [13] that
statistics of the channel interference do not play any role
for the approaching the state dependent AWGN channel ca-
pacity. Moreover, as it was pointed out [14], a significant
rate loss might be expected in the Wyner-Ziv problem for
the non-Gaussian source contrarily to the coding when the
side information is available at both encoder and decoder,
questioning the possibility to establish the overall duality of
source and channel coding with side information [15].

Therefore, the main objective of the foregoing sections
is to find a way of the quantitative performance analysis of
the Laplacian host estimation at the output of the AWGN
state-dependent channel.

4. PARALLEL SOURCE SPLITTING

Although Laplacian model was successfully exploited in
image processing, even more gain can be obtained from
the local consideration of the data in wavelet subbands [16].
The corresponding procedure of local data samples classi-
fication based on their statistical properties is known as a
source splitting [17] and establishes the mathematical re-
lationship between local and global stochastic models us-
ing the infinite Gaussian mixture model. In this model, the
global zero mean Laplacian pdf can be equivalently repre-
sented as a weighted mixture of zero-mean Gaussian pdfs
with non-stationary variance capturing local data statistics:

pX(x) =
∫ ∞
0

pX|Σ2

X

(x|σ2
X)pΣ2

X

(σ2
X)dσ2

X , (2)

where pX|Σ2

X

(x|σ2
X) = 1√

2πσ2

X

e
− x

2

2σ2

X and pΣ2

X

(σ2
X) =

0.5λ2e−0.5λ2σ2

X .
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It is important to note that one of the state-of-the-art im-
age compression algorithms [8] is based on this model. In
fact, omitting the practical details of local variances com-
munications to the decoder, Hjorungnes et. al. [17] were
the first who theoretically demonstrated that the rate gain
between Laplacian and Mixture Gaussian models can be as
much as 0.312 bits/sample for high-rate compression mode.

Assuming the availability of local variances at the de-
coder in the i.i.d. Laplacian host communications via the
state-dependent Gaussian channels, we would like to for-
mulate the problem of such data optimal estimation.

5. PARALLEL TRANSMISSION OF LAPLACIAN
HOST

The setup of communications of the i.i.d. Laplacian host
XN that is available at the encoder via the state-dependent
channels when the information about local variances Σ2

X is
available at the decoder is presented in Figure 3.

Encoder Decoder
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Fig. 3. Parallel Laplacian host communications via the
state-dependent channels.

In this case, the optimal per-sample transmission is per-
formed using uncoded principle [6]. Thus, to bound the av-
erage distortions, the following Lemma can be formulated.

Lemma 1. Consider a state dependent channel Y N =
WN (XN ) + XN + ZN with non-causal side information
XN globally distributed according to i.i.d. Laplacian distri-
bution with parameter λ available at the encoder, indepen-
dent noise ZN , Zi ∼ N (0, σ2

Z), the encoder power con-
straint 1

N
ΣN

i=1E
[
W 2

i

] ≤ P and side information (local
variances, Σ2

X =
[
σ2

X1
, σ2

X2
, ..., σ2

XN

]
perfectly available at

the decoder. The MMSE error of the state XN at the de-
coder is given by the following expectation:

D
Hjorungnes
MMSE =

∫ ∞
0

D(σ2
X)pΣ2

X

(σ2
X)d

(
σ2

X

)
=

∫ ∞
0

σ2

X
σ2

Z

(σX+
√

P)+σ2

Z

0.5λ2 exp
(−0.5λ2σ2

X

)
d

(
σ2

X

)
. (3)

Proof. The proof is based on the same arguments exploited
in [6] for per-symbol transmission and the final result is ob-
tained by the expectation with respect to the given prior lo-
cal variance distribution.

To validate the performance of the proposed non-statio-
nary Laplacian host communications across the state-depen-
dent channel with stationary i.i.d. Gaussian noise we per-
formed a number of experiments. Besides asymmetric-side-
information-assisted transmission, we analyzed the uncoded

transmission over the Gaussian state dependent channel of
Laplacian and Gaussian data (Figure 2). The former method-
ology, being suboptimal in the information theoretic sense,
allows to see the real performance gain of the proposed non-
symmetric side information over a possible alternative that
might be very attractive for practice due to its simplicity.
The latter one is selected in order to demonstrate the worst
case scenario in target application.

To validate the accuracy of the uncoded transmission of
the Laplacian host we assumed that WN = αXN , α =√

P
σ2

X

to satisfy the input power constraint, and obtained the

MMSE estimate X̂N based on the channel output Y N =
XN + WN + ZN :

X̂N =

((
1
2 − 1

2erf

(
Y N+

λσ
2

Z

a

σz

√
2

))
×

exp
(
−λY N

a
+

λ2σ2

Z

2a2

)
+ exp

(
λY N

a
+

λ2σ2

Z

2a2

)
×(

1
2 − 1

2erf

(
Y N+

λσ
2

Z

a

σz

√
2

)))−1

((
Y N

a
− λσ2

Z

a2

)
exp

(
−λY N

a
+

λ2σ2

Z

2a2

)
× (4)(

1
2 + 1

2erf

(
Y N−λσ

2

Z

a

σz

√
2

))
+

(
Y N

a
+

λσ2

Z

a2

)
×

exp
(

λY N

a
+

λ2σ2

Z

2a2

)(
1
2 − 1

2erf

(
Y N+

λσ
2

Z

a

σz

√
2

)))
,

where a = 1 + α = 1 +
√

P
σ2

Z

and erf(x) denotes the error

function, erf(x) = 2√
π

∫ x

0
exp

(−t2
)
dt.

Then, DMMSE = E
[
dN (X̂N , XN )

]
=

∫
X

∫
Z (x − x̂)

2 ·
pX(x)pZ(z)dzdx, where pX(x) is Laplacian pdf of the host
and pZ(z) is the channel pdf that is assumed to be i.i.d.
zero-mean Gaussian with the variance σ2

Z and d(xi, x̂i) =
(xi − x̂i)

2. The expression for DMMSE does not exist in
the closed analytic form and was evaluated numerically.

The exploited experimental setup can be summarized as
follows. The variance of the communicated payload was
selected σ2

W =10 in order to satisfy the requirements of Stir-
mark benchmark [18] concerning the stego image quality.
Two WIR regimes, WIR1 = −6 dB WIR2 = −16, dB were
selected to be compliant with the usually assumed regimes
in robust watermarking community [19]. The range of pos-
sible WNR was fixed to WNR ∈ [−15; 15] dB.

The obtained experimental results (Figure 4) demon-
strate that proposed parallel uncoded transmission of the
Laplacian host allows to provide the highest estimation ac-
curacy especially for negative WNR. For quantitative com-
parison purpose, we compared performance of all systems
in terms of WNR for the distortion levels D = 70 for WIR=-
16 dB and D = 25 for WIR=-6 dB. The respective WNRs
in the former case are: Gaussian setup (-13.5 dB); Laplacian
setup (-12 dB); Parallel splitting (-11.8 dB) and in the lat-
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Fig. 4. Estimation accuracy in terms of average distortion
of the Gaussian and Laplacian data at the output of the
state-dependent channel for WIR=-6dB and WIR=-16dB:
stationary versus non-stationary (Ramstad) case.

ter case: Gaussian setup (-11.1 dB); Laplacian setup (-11.4
dB); Parallel splitting (-12.2 dB). Based on the received re-
sults one can conclude about the performance superiority of
the proposed non-stationary transmission.

6. CONCLUSIONS

In this paper we considered the problem of i.i.d. Lapla-
cian host communications via the state-dependent channel.
Based on the parallel source splitting paradigm, we pro-
pose an asymmetric-side-information uncoded transmission
setup. We formulate the coding lemma for this setup and
draw the main steps of their proofs. In order to experimen-
tally validate the proposed protocol we perform a number
of tests that demonstrate its efficiency.
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