
ON THE DESIGN OF PREFETCHING STRATEGIES IN A PEER-DRIVEN VIDEO
ON-DEMAND SYSTEM

Yanming Shen†, Zhengye Liu†, Shivendra Panwar†, Keith Ross‡, Yao Wang†

Department of Electrical and Computer Engineering†
Department of Computer and Information Science‡

Polytechnic University

ABSTRACT

In this paper, we examine the prefetching strategies in a peer-

driven video on-demand system. In our design, each video

is encoded into multiple low bit-rate substreams and copies

of the substreams are distributed to the participating peers.

When a peer streams in a substream of rate r, it instead streams

at rate r̂ where r̂ > r. In this manner, if one of the peer’s

suppliers disconnects, the client peer can tap the reservoir

of prefetched bits while searching for a replacement server,

thereby avoiding any glitches or reduced visual quality. We

examine how to assign prefetching rates to each of substreams

as a function of their importance. Our studies show that ap-

propriate prefetching strategies can bring significant perfor-

mance improvements for both multiple description and lay-

ered videos.

1. INTRODUCTION

We have proposed a peer-driven video on-demand architec-

ture [1, 2]. In our design, as shown in Figure 1, each video

is encoded into multiple low bit-rate substreams, and copies

of these substreams are stored in peers. When a client wants

to view a video, it receives multiple sub-streams, each from a

different server peer. As the sub-streams arrive to the client,

the client combines the sub-streams, decodes and displays the

video. Because each sub-stream typically has a rate that is a

fraction of the combined stream, the server peers can more

easily accommodate sub-streams with their limited upstream

bandwidth. Furthermore, if the system is designed properly,

the loss of one stream due to a server failure or disconnect

will not seriously impair video quality while it is waiting for

a replacement sub-stream.

In this paper, we investigate how to design prefetching

policies that improve the system performance. By prefetch-

ing, peers download streams at rates that are higher than the

playback rate [3, 4, 5, 6]. In this manner, when a substream

is lost, the client may have a sufficient “reservoir” for that

sub-stream, so that playback continues without any quality

degradation. This paper is organized as follows. In Section

2, we describe our model and in Section 3 we present both

S
1

S

Client

S
2

S
M

Substream 1

Substream 2

Substream M

. . .

Request

Fig. 1. Peer-driven video on-demand architecture (A client

sends the request to the video server, and the server finds M
peer servers which store substreams of the video. Then, each

peer server sends a different substream to the client.)

an optimal and a heuristic prefetching policy. We evaluate

the performance of our proposed scheme with simulation in

Section 4, and Section 5 concludes the paper.

2. SYSTEM MODEL

We consider a homogeneous system with N peers, each with

Bu bps of uplink bandwidth. Each peer is connected with

probability µ and peer connectivity is independent from peer

to peer. There are J videos in the network. Each video is

encoded into M substreams using either multiple description

coding (MDC) or layered coding [1, 2], and each substream

has a bit rate of r. Thus the total rate of a video with all

substreams is R = Mr. Each peer has a storage constraint

and stores at most one substream of a particular video.

When a user makes a request, the peers storing substreams

of that video are selected and each of these server peers sends

a different substream to the client. When the available uplink

bandwidth of a server peer exceeds the substream rate, the

system is prefetched into the client’s prefetch buffer, which

we model as infinite. This allows the peer to stream at rate

r̂ > r and build up a reservoir of non-rendered video. In this

manner, if one of the server peers disconnects, the client peer

can tap into the reservoir while searching for a replacement

peer, thereby avoiding any glitches or reduced visual quality.

By increasing r̂, we build up the reservoir more quickly,

8171424403677/06/$20.00 ©2006 IEEE ICME 2006

but we also consume more uplink bandwidth in peer servers.

Our goal is to identify the prefetching policies which assign

the rate to each substream optimally such that the average dis-

tortion of the overall system is minimized. Next, we first for-

mulate and solve a simplified and idealized model. We then

describe a heuristic implementable algorithm.

3. PREFETCHING POLICIES

3.1. An optimal off-line prefetching algorithm

In this section, we present an optimal prefetching algorithm,

which assumes that the available bandwidth for each request

during the entire streaming session is known a priori. This

algorithm minimizes the average distortion and provides a

benchmark for system performance.

In this simplified model, we do not consider the storage

limitation at the peers and assume that all substreams of all

videos are stored in every peer. Let X(t) be a random variable

denoting the total number of peers in the network that are up

at time t; X(t) is binomial with parameters N and µ. The

total available bandwidth in the network is X(t)Bu. If there

are Q(t) on-going streaming sessions, then on the average,

the available bandwidth that each session receives is

B(t) = X(t)Bu/Q(t), (1)

and this amount of bandwidth can be used to download video

bits being played back at time t or prefetch bits to be played

back during future time slots. The optimal prefetching policy

determines how to allocate the bandwidth B(t) at time t to the

M substreams in order to minimize the average distortion.

Assume the length of the video is T and time is broken

up into slots [tk, tk+1), where t0 = 0 and tn = T . Define

B̄(k, l) to be the average bandwidth available to a request

from time tk to the current time slot tl, where B̄(k, l) =∫ tl

tk
B(t)dt/(tl − tk). Then the optimal off-line algorithm is

as follows (Figure 2):

1. Calculate B̄(0, l), where l ranges from 1 to the last time

slot n. Choose the minimum among {B̄(0, 1), . . . , B̄(0, n)}.

Assume the minimum is at time slot τ1, that is, B̄(0, τ1) =
min B̄(0, l),1 ≤ l ≤ n, and if there is a tie, pick the

largest τ1. From time slot t0 to time slot τ1, stream

m1 = min{B̄(0, τ1)/r, M} substreams (to simplify

the presentation, we ignore the integer constraint).

2. Calculate B̄(τ1, l), τ1 +1 ≤ l ≤ n. Then as in step (1),

choose the minimum among {B̄(τ1, τ1+1), . . . , B̄(τ1, n)}.

Assume the minimum is at time slot τ2, then stream

m2 = min{B̄(τ1, τ2)/r, M} substreams from time slot

τ1 to τ2.

3. Repeat the above process from time slot τ2 until the

ending time slot n is reached.

m
1

m
2

m
p

2

Number of

substreams

time
p1p1

Fig. 2. Bandwidth allocation of optimal prefetching algorithm

In the worst case, the algorithm has n iterations.

Assume the algorithm divides the entire streaming ses-

sion into p (p ≤ n) intervals. Then by construction, we

have B̄(0, τ1) < B̄(τ1, τ2) < . . . < B̄(τp−1, τp), and mp =
min{B̄(τp−1, τp)/r, M}. Within each interval, if the instan-

taneous bandwidth B(t) is greater than B̄(τp−1, τp), then the

surplus bandwidth B(t)− B̄(τp−1, τp) is used to prefetch bits

in the future time slots. Next, we show that this algorithm

minimizes the average distortion for layered videos; for MD

videos, our simulations also show that it results in the mini-

mum distortion.

Theorem: The above algorithm minimizes the average

distortion for layered videos.

Proof: Let Dm(mr) denote the distortion when decoding

to the mth layer. First, we show that within each interval,

with available bandwidth B̄(τp−1, τp), the average distortion

in that interval is minimized by the optimal algorithm. With-

out loss of generality, we prove this for [0, t1], and it can be

extended to other intervals directly. Consider a hypothetical

prefetching scheme that results in a bandwidth allocation in

time interval [0, τ1] as follows: within time slot [0, δ1], the

request receives mδ1 layers, and within time slot [δ1, δ2], it

receives mδ2 layers, if the entire interval is divided into j
sub-intervals, then within time slot [δj−1, δj], the request re-

ceives mδj layers. The average distortion for this prefetching

scheme within time interval [0, τ1] is

j∑

i=1

δi

τ1
Dmδi

(mδir).

Also, from the bandwidth constraint, we have,

m1rτ1 = B̄(0, τ1)τ1 ≥
j∑

i=1

mδirδi, (2)

that is, m1r ≥ ∑j
i=1

δi

τ1
mδir. Therefore,

Dm1(m1r) ≤ D(
j∑

i=1

δi

τ1
mδir) ≤

j∑

i=1

δi

τ1
Dmδi

(mδir), (3)

where the last inequality is due to the convexity of the rate-

distortion curve. From (3), we conclude that the optimal algo-

rithm minimizes the average distortion within time slot [0, t1].
Next, we show that based on the construction of the opti-

mal algorithm, it is inferior to allocate bandwidth in the cur-

rent interval to prefetching bits in the future intervals, that

818

is, increasing mj in [τj−1, τj] by decreasing mi in [τi−1, τi],
where τj is after τi. This is because m1 < m2 < . . . mp,

then again from the convexity of the rate-distortion curve, it

results in a larger average distortion. Therefore, we conclude

that the optimal prefetching algorithm minimizes the average

distortion.

3.2. A heuristic prefetching policy

In this section, we present an on-line heuristic algorithm, which

applies to the model we described in Sec. 2 and operates with-

out the knowledge of future available bandwidth.

From the offline algorithm, we know that if the average

available bandwidth for a request is B̄, then the system will

never stream more than B̄/r substreams to a request. Also,

the prefetching buffer contents of each request will have an ef-

fect on the prefetching policy design. Consider a simple sce-

nario where two requests compete for a peer’s uplink band-

width; obviously we should allocate more bandwidth to the

request with a smaller prefetching buffer content (for the lay-

ered video, assume they have the same importance). There-

fore, to implement our prefetching policy, the server peer needs

to keep track of the prefetch buffer content and an estimate of

the average available bandwidth for a request. At any time t,
based on the current number of connected peers, the uplink

bandwidth of these peers, and the number of on-going ses-

sions, such an estimate can be calculated from (1). Let lsm(t)
denote the prefetch buffer content of substream m for request

s at time t. For layered videos, since the layers are recursively

dependent, for any streaming session, the prefetching buffer

content of layer m is always kept less than layer m − 1. The

relative importance of different layers is represented by a pa-

rameter α (Figure 3). Given the most recent estimate B̄(t),
and the contents of prefetch buffers, the prefetching policy is

as follows:

• For each session, stream min{B̄(t)/r, M} substreams.

• For MD videos, since all descriptions have the same

importance, the bandwidth is first allocated to the sub-

stream with the shortest prefetch buffer content.

• For layered videos, a server peer compares any two lay-

ers i, j (layer i is requested by streaming session si and

layer j is from sj .) as follows: if l
sj

j ≥ lsi

i − (j − i)/α,

then layer i has a higher priority. Otherwise, layer j is

the high priority one. The bandwidth is allocated to the

high priority layers.

4. SIMULATION STUDIES

In this section, we evaluate the performance of our proposed

prefetching algorithm.

.

.

.

1

3

2

m

Prefetch buffer content

Slope= -

Layer index

Fig. 3. Relative importance of substreams based on the

prefetch buffer content. The prefetch buffer content target

size should follow the straight line with slope −α.

4.1. Simulation settings

In our simulation, we assume a homogeneous network with

300 peers. Each peer has the same connectivity probabil-

ity, uplink bandwidth and storage capacity. We set the up-

link bandwidth of each peer to 256 kbps and the storage con-

tributed by a peer to 1 GB. Each peer in the network alter-

nates between “connect” and “disconnect” status. We model

the connect time as an exponentially distributed random vari-

able with mean 140 seconds. Similarly, the disconnect time is

another exponentially distributed random variable with mean

60 seconds. Then the probability that a node is connected is

0.7. In our simulations, we set an admission control parameter

Qmax. If the total number of sessions in the network reaches

Qmax, then new requests are blocked. The replacement time

is set to be 4 s, which is the time to find a replacement peer if

a server peer disconnects during the streaming session.

There are J = 30 videos in the network. The requests for

each video are modeled as a Poisson process, where the rate

is based on the popularity of the video. Each video is encoded

into 32 substreams with a rate of 16 kbps. Thus, the total rate

of a video is 512 kbps.

4.2. Simulation results

We compare our heuristic prefetching policy with the follow-

ing straightforward prefetching scheme: since a server peer

can send at most γ = Bu/r number of substreams, if there

are more than γ requests to this peer, then this peer will just

serve γ requests and there is no prefetching for any substream.

If the number of requests is less than γ, then the surplus band-

width is distributed equally among all substreams.

Figure 4 shows the performance improvement of MD-

FEC video with prefetching. When Qmax is small, there is

no significant improvement. The reason is that when Qmax

is small, B̄(t)/r > M , and a request is allowed to receive all

descriptions. However, when Qmax is large, B̄(t)/r < M ,

then our heuristic prefetching policy will make each request

receive approximately B̄(t)/r descriptions. This leads to a

smaller average distortion.

Figure 5 compares the performance of layered video with

819

20 40 60 80 100 120 140 160
25

26

27

28

29

30

31

32

33

34

Qmax

V
id

eo
 q

ua
lit

y
(d

B
)

Optimal
Heuristic policy
Simple prefetching
No prefetching

Fig. 4. Comparison of prefetching policies for MD-FEC

20 40 60 80 100 120 140 160
22

24

26

28

30

32

34

Qmax

V
id

eo
 q

ua
lit

y
(d

B
)

Optimal
Heuristic policy
Simple prefetching
No prefetching

Fig. 5. Comparison of prefetching policies for layered video

prefetching. We can see that compared to MD-FEC video,

layered video achieves a larger improvement with prefetch-

ing. Again, our heuristic policy outperforms the simple prefetch-

ing scheme. However, the performance of the heuristic policy

is not close to the optimal algorithm. This is in part because

the optimal algorithm assumes a peer stores all layers of all

videos, while for the heuristic policy, a peer only stores one

substream of a particular video. Under this situation, a peer

cannot serve a substream if a lower layer for that request is

not available, even if this peer has surplus unutilized uplink

bandwidth.

In [2], we showed that if the replacement time is non-

negligible, MD-FEC has a better performance than layered

coding. Figure 6 compares the performance of MD-FEC and

layered video with the heuristic prefetching policy. When re-

placement time is set to be 4 s, we can see the performance of

layered video is worse than MD-FEC even with prefetching.

5. CONCLUSION

In this paper, we studied the prefetching policies in the peer-

driven video streaming system. We presented an offline al-

gorithm which provides an upper bound on the system per-

formance. We also proposed a heuristic prefetching policy

to significantly improve the system performance. Our studies

showed that the performance of both MD-FEC and layered

video can be improved by applying appropriate prefetching

policies and that prefetching provides more gain to the lay-

20 40 60 80 100 120 140 160
25

26

27

28

29

30

31

32

33

Qmax

V
id

eo
 q

ua
lit

y
(d

B
)

MD−FEC
Layered

Fig. 6. Comparison of MD-FEC and layered video

ered system than to the MD system. Nonetheless, even with

prefetching, the MD system still yields better performance

than the layered system, under our simulation setting. This is

primarily because the layered substreams follow a nested de-

pendency, which leads to a lower network utilization: a server

that stores a higher layer substream cannot utilize its uplink

bandwidth if the servers with a lower layer substream are all

busy or unavailable.

6. REFERENCES

[1] X. Xu, Y. Wang, S. S. Panwar, and K. W. Ross, “A peer-

to-peer video-on-demand system using multiple descrip-

tion coding and server diversity,” in IEEE International
Conference on Image Processing (ICIP), Oct. 2004.

[2] Y. Shen, Z. Liu, S. S. Panwar, K. W. Ross, and Y. Wang,

“Streaming layered encoded video using peers,” in

IEEE International Conference on Multimedia and Expo
(ICME), Amsterdam, The Netherlands, July 2005.

[3] P. Decuetos and K.W. Ross, “Adaptive rate control for

streaming fine-grain scalable video,” in International
Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV) 2002, Miami, May

2002.

[4] D. Saparilla and K.W. Ross, “Optimal streaming of lay-

ered encoded video,” in IEEE Infocom, Tel Aviv, March

2000.

[5] T. Kim and M. Ammar, “Quality adaptation for mpeg-4

fine grained scalable video,” in IEEE Infocom, New York,

NY, June 2003.

[6] R. K. Rajendran and D. Rubenstein, “Optimizing the

quality of scalable video streams on p2p networks,” in

IEEE Global Telecommunications Conference, Dallas,

USA, November 2004.

820

