
Object Tracking in Compressed Video with Confidence Measures

Lan Dong1, Imad Zoghlami2, Stuart C. Schwartz1

1Dept. of Electrical Engineering, Princeton University, {ldong, stuart}@ princeton.edu
2Real-Time Vision & Modelling, Siemens Corporate Research Inc., imad.zoghlami@siemens.com

ABSTRACT

In this paper, a novel robust tracking algorithm in compressed

video is proposed. Within the framework of video compression

standards, we consider how to accurately estimate motion of an

object by utilizing motion vectors available in compressed video

together with derived confidence measures. These confidence

measures are based on DCT coefficients, spatial continuity of

motion and texture measure of the object. We perform tracking

directly on the compressed data and also consider tracking of an

object with image scale change. In order to achieve robust tracking,

we develop a system which enables us to detect object appearance

change such as illumination change and occlusion by exploring the

confidence measures derived above. Preliminary results indicate

that our tracking algorithm works well with a variety of video

sequences.

1. INTRODUCTION

Visual tracking has been an area of intensive research in the field

of computer vision. With the advent of emerging multimedia

standards like MPEG, it has become essential to develop a system

that performs visual tracking in a computationally efficient manner.

Tracking in the compressed domain is of interest since working in

the compressed domain brings a lot of advantages. As discussed in

Wang, Zhang and Zhang [1], motion information stored in B, P

frames of compressed video are readily available without incurring

the cost of re-estimation of the motion field. Secondly, the pixels

have been de-correlated and coded in DCT form, which can

indirectly, yet readily relay information on image characteristics.

Motion vectors have been widely used for tracking purposes in

compressed domain as they readily provide motion information

[1]-[3]. But there are also problems using them. Although motion

vectors embed rich motion information among frames, they were

originally designed to minimize the matching error for coding

purposes; thus they do not always indicate true motions [4].

Secondly, error from motion vectors due to absence of any

verification for the object being tracked (i.e., ground truth) is easily

accumulated and typically results in loss of tracker. Thirdly, the

appearance of an object to be tracked is always changing, caused

by occlusion, illumination, size change or etc., in which cases, the

use of motion vectors for tracking is not always feasible.

With the pros and cons of compressed domain processing in

mind, we have as our goal to explore the use of compressed motion

and pixel information in novel ways to avoid excessive decoding

and simultaneously to improve tracking accuracy.

In this paper, we develop a system which can achieve robust

tracking of an object. The robustness consists of two aspects: we

try to accurately estimate and smooth the motion field by a

confidence measure based on DCT coefficients, spatial continuity

and texture of object. Our system utilizes the idea found in [1] for

designing the confidence measures and we further explore these

measures to determine object size and to detect object change

(occlusion, illumination change, etc.), which is the other aspect of

the robustness of our system. If object change is detected, we use

the next I frame, the reference for each GOP (Group of Pictures),

to determine the position of the tracked object. The proposed

object tracking system tries to achieve robustness and efficiency at

the same time as we avoid performing an inverse DCT transform,

which is an expensive computing process.

The rest of the paper is organized as follows. The description of

the approach is discussed in Sec.2. The experimental results are

presented in Sec.3, followed by Sec.4, with discussion and

conclusions.

2. ROBUST SYSTEM AND COMPONENT DESIGN

2.1 System overview

Fig 1 Block Diagram of System (Iflg is the I-rectification

indicator)

Given a MPEG-2 video clip as input, we perform tracking of an

object which is manually selected at the first frame of the video.

Initial selection can be automated in future versions. In the

7531424403677/06/$20.00 ©2006 IEEE ICME 2006

following P frames, leaving B frames unprocessed, the motion

vectors (MV) hitting the object, together with their derived residual,

spatial and textural confidence measures are then used for deciding

the new position and size of the object. Simultaneously, by

exploring these three confidence measures, we can detect change

of object (occlusion or global illumination change or else). When

there is no object change detected, we continue with this process

until the next I frame occurs, at which point we use a kinematics

model to predict the position of the object. If we have detected

object change or the motion trajectory of the object is abnormal,

we use kinematics model to predict the position in the current

frame and call for I rectification to find the object when the next I

frame occurs. After the object is relocated and updated, we repeat

the above process in the new GOP. If the object can not be found in

this I frame, we call for human interaction. The overall process can

be seen in Figure1. The detailed process will be given in the

following sections.

2.2 Residual Confidence Measure

In the encoding process, for the P frame, a temporal prediction is

first employed and then the inter-frame prediction error is DCT

encoded [5]. The prediction error is the difference between the

current block and the motion-compensated reference block, which

can be modeled as Gaussian noise for each pixel in the block. Then

we can consider the sum-square of the prediction error of the

whole block as a probability measure of the current block matching

the reference block. In other words, if the sum-square of the

prediction error is big, the probability of the current block

matching the reference one is small. This is used as a Residual

Confidence Measure for the motion vector in our method. We

define it as:)exp()exp(1_

22

K

err

K

err
wt

DCT where

K is the variance of the error.

The second equation comes from Parseval’s relation that the

total energy of the signal is not changed by a DCT transformation.

Thus, this weight is easy to get from the coded data without

decoding.

2.3 Spatial Confidence Measure

It is believed that motion vectors of macro-blocks over the rigid

object area remain spatially unchanged just as the optical flow field

has some smoothness constraints [6]. We want to favor the MV

which is smooth within its neighborhood and to penalize the MV

of sharp motion discontinuities which may frequently occur near

an object boundary or in an occluded area. Our spatial confidence

measure is a score that reflects how the current motion vector

violates the “neighborhood smoothness” constraint. It is defined as:

)}ofneighbor{exp(2_ medwt where }{med

is a median filter.

2.4 Textural Confidence Measure

From the encoding standard, the motion vector is a temporal

prediction which aims at minimizing the temporal redundancy or

matching error. It is not necessarily the true motion of the

macro-block. For example, the motion vectors of the homogeneous

region (e.g. the background of Fig. 2) will be random, which

provides no information about how the object moves. Therefore,

we want to find a measure which will be related to the

homogeneity of the texture and which indicates how much

confidence we have that the motion vector is the true motion.

In [1], the authors use the AC energy of each block as a textural

confidence measure. This works well for a constant region but we

have found it does not work well for homogenous regions which

have a rich pattern and, thus, high AC energy.

Our textural confidence measure is defined in the following way:

for each macro-block in the object, we search in a small area

centered on it for the best match macro-block according to the

mean absolute difference (MAD), which is the most popular block

matching criterion in MPEG. We then use the MAD of the best

match, i.e. the minimal MAD-- minMAD for each macro-block as

our confidence measure. It is clear that the bigger the minMAD,

the more distinguishable the macro-block is with its neighborhood,

the less probable that the motion vector points to the mistaken

block, the more reliable its corresponding motion vector being the

true motion. The equation is: minMAD3_wt where

is a normalization coefficient.

Our idea in defining the textural confidence is to explore how

the MV is formed and to view the root cause of the uncertainty of

the MV before we try to design a confidence measure. Figure 2

shows a sample of textural confidence measure where darker

regions indicate lower confidence. The cup in the figure has a rich

pattern but is still homogenous; thus it should have low confidence.

Results from our method seem better than that of using AC energy.

 (a) (b) (c)

Fig 2: (a) original image (b) Textural measure by AC (c)

Textural measure by minMAD

The textural confidence of an object is calculated at the first

frame when the user selects the object and saved for future use. As

it is related to only the object texture, there is no need to compute

it in each new frame.

2.5 Motion Prediction Based on 3 Measures

Combining these three measures, we obtain a single score to

express our overall confidence in the current motion vector. As we

don’t know which weight is more important for now, the weights

in our implementation are set to be equally important based on our

preliminary simulation. That is: 3_
3

1
2_

3

1
1_

3

1
wtwtwtw

However, further experimentation is required to optimize the

weights of the confidence measures.

We extract the MV from the MPEG data stream. For each

non-skipped slice macro-block in the current P frame, we have a

motion vector that points to a macro-block which is most similar

with the current one among the nearby macro-blocks in the

previous reference frame. For the skipped macro-blocks, we

consider the motion vector having zero-length. We ignore the

intra-coded macro-blocks.

With MV and associated confidence, we are ready to compute

the position of the object. For now, we assume the object is fixed in

size. For the motion vector which points into the object region, we

call it a hit and denote it as . In Schonfeld and Lelescu [3], they

collect and average all the hits (motion vector which points to the

object region) to get the motion of the object. This procedure does

not work well when the MV does not indicate true motion. In our

algorithm, we combine the confidence measure with each hit

vector to estimate the motion of the object, , as:

i

w

754

n

i

ii

n

w
ww 11 ...

1
where n is the number of hits

in the reference picture, including relevant skipped macro-blocks.

Figure 3 illustrates how we compute the motion from hits. The

new position of the object in the current frame, , based on the

previous position is:

cur

ref refcur

Fig 3: Use hits for object motion

The proposed method is superior in finding the exact object

position when compared with block based tracking method as in

[1], [2]. This is because for the block based method, objects can

rarely be tracked sharply and with precision along their exact

boundaries due to the blocky nature of the data. But as we compute

object motion from the MV, which is pixel-wise accurate, our

object motion is also pixel-wise accurate and thus we are able to

find the precise position of the object.

2.6 Object Size Change

Position and size scale change are the most commonly seen motion

of objects in a video. Above, we have already given how to get the

position of the fixed size object using the weighted sum of motion

vector. There remains the problem to get the new position and size

of the object when there is object scale change.

We outlined the idea of proof in the following that in the ideal

case (all the MV’s are 100% confident), the position can still be

determined by the average of motion vectors and the scale by the

variance of them. For simplicity, we consider the 1-D object since

it is straightforward to generalize to the 2-D case. Assume the

object has length l in the current frame and length in the

reference frame (See Figure 4). Then, we will have hit motion

vectors: , the average of which gives

the motion () of object.

L
n

)(),1(),...,2(),1(nvnvvv

Assume those hit motion vectors average to zero (if not zero,

shift by the mean) in the y-direction and are all the same in the

x-direction (Figure 4). It is easy to get that, after some calculation,

the variance the vectors as indicated in the figure.

Fig 4: MV’s for object with size change (the solid part in the

frame indicates an object) and variance for the vectors

Therefore, the new length can be determined as:l

positive tonegtivefromchange)(~)1(ofdirection-yif
)(

)var(

negtive topositivefromchange)(~)1(ofdirection-yif
)(

)var(

nvv
nK

V
L

nvv
nK

V
L

l

For the general non-ideal case, the object position and size can

be determined in the same way except that we will use the MV

together with its confidence measure to derive the weighted

average and variance.

2.7 Detection of Object Change

One of the biggest problems with MV tracking is that in a video

sequence, it is very often the case that the object appearance

changes, even for a rigid object. The causes include global

illumination change, object being occluded, object turning around,

scene switch, etc. Change of object appearance will result in

abnormal motion vector behavior and thus loss of track. Therefore,

it is very important that we use a robust tracking method that can

detect change of object and relocate the object as soon as possible.

In our method, we explore the behavior of the MV and the

weights developed for the confidence measures to detect object

appearance change.

First, when there appear many intra-coded macro-blocks in the

object region, we declare object change. Intra-coded macro-block

often indicates that there is no ‘matching’ macro-block in the

reference frame. When there are not enough matching

macro-blocks in the current frame, we consider the object

appearance may have changed.

Second, when there are many macro-blocks whose residual

measure falls below some threshold, we claim the object

has changed. If the residual measure of the macro-block falls

below some threshold, that is equivalent to saying that the

prediction error is big and the probability of the macro-block being

the true match of the reference one is small.

1_wt

Third, when there are many macro-blocks whose

value falls below some threshold, we announce the

object change. As we discussed before, when the spatial measure

2_wt is l, it indicates that the motion vector in the object

region is not consistent with its neighbor. This is usually caused by

object change. But sometimes, it is not true. For example, for a

homogenous object region, the motion vector can be random and

thus the spatial measure is small. However, it is not caused by

object change but rather by ‘matching criteria’ during encoding and

we should not label these macro-blocks as changed. Therefore, we

should consider the spatial measure together with the textural

measure 3_wt to decide object change. If a function is used to

present with how much confidence an object has not been changed,

it should have two properties: for fixed textural measure, the

bigger the spatial measure, the more confident the object has not

been changed; for fixed spatial measure, the smaller the textural

measure, the more confident the object has not been changed. As

2_ wtwtf ve properties, it can be used in our

object change test, i.e. if f is less than some threshold, we claim

that macro-block has changed; when number of changed

macro-blocks is big, we claim object change.

3_2_ wtwtf

smal

has the abo3_

When any one of the above three test is satisfied, we announce

an object change. We use the kinematics model instead of

computing from the MV for the object position in the current frame

and call for I-Rectification in the following I frame to relocate the

object.

755

2.8 I Frame Rectification

I frame rectification is very commonly used in MV tracking

algorithms to ensure tracking precision, as in [2], [3]. If we decode

the coming I frame into the pixel domain, there are numerous

existing methods to do I-Rectification as it then becomes a

common tracking problem in the computer vision area. However, it

is a potentially computationally intensive task to decode the whole

frame. In our system, we use the DCT-based compressed domain

tracking method proposed in [7]. If the object is found, the tracker

continues to track using the algorithm discussed above. If the

object is not found, the system calls for human interaction.

Besides detection of object change, there are other cases for

which I-Rectification is needed. One case arises when the object

motion becomes bigger than the search window during encoding,

and the motion vector will not be big enough to predict the motion.

In this case, the patterns of the motion vectors will be similar with

that of object change and it fails any of the above three tests.

Another case is when we see an abnormal motion trajectory of the

object from the kinematics model. In addition, in order to ensure a

balance between tracking precision and efficiency, we also call for

I-Rectification when there is no I-Rectification for a great number

N0 of frames (e.g. N0=1000).

3. EXPERIMENTAL RESULTS

The experiments are designed to test the reliability of tracking with

the MV and the detection of object change. Initially, we simply use

template matching in a local search window for I-Rectification. For

the kinematics model, we use linear prediction from the previous

two tracking positions: for simplicity. All

the videos are encoded with 24 frames in a GOP, the structure of

which is: IBBPBBPBBPBBPBBPBBPBBPBB. The tracking

performance is shown in Table 2. False Alarm and Miss Detection

are used to test the reliability of the detection of object change

while Average % overlap BB, which is the average percentage of

the ground truth bounding box (BB) has overlapped the tracker's

bounding box, is used to see how well MV tracking performs.

)(211 iiii

Table 2 Tracking performance of different videos

Sequence Green Red Train Son Girl Walk

of P/I Frames 80 80 97 17 56 74

False Alarm 0 3 0 0 0 2

Miss Detection 0 0 1 0 0 1

Avg%overlap BB 94 81 95 95 98 78

The first two sequences are the tracking results from a

well-known sequence cactus. We try to track the size varying red

pen and the green pen (Figure 5) respectively.

The third one is from another well-known sequence Mobile

and Calendar. It works very well for tracking the train until it

gives out continuous alarms at the end where the train is occluded.

The fourth sequence has sudden scene change in it. We try to

track the face of the boy at the first frame while the whole scene

suddenly changes at the 30th frame (Figure 6). Our tracker gives

out an alarm immediately and calls for human interaction when in

the following I frame, the tracker can not find the object face.

The fifth sequence has gradual illumination change in it and in

the sixth sequence the person makes two turnarounds. Our tracker

has detected the first turnaround as an object change but misses

the second one. One interesting thing to see is that when the

person is turning around, the bounding box first becomes larger

and then becomes smaller. It tries to fit the person as the image of

the person changes from bigger and then to smaller as she turns.

This is achieved by the size prediction feature in our algorithm,

which has again been shown to work well.

Because of space limits, only two results are shown here in Fig

5 and 6. More results can be accessed at:

http://www.princeton.edu/~ldong/research/MV_tracking/

These sequences were chosen to reveal a variety of common

difficulties and different object changes in tracking tasks. Our

algorithm appears to overcome many of these difficulties and

achieves good performance.

On a 1 GHz PIII processor, our implementation can process

about 1600 P frames per second with the object size of 96x64

pixels. The C++ program is not optimized in terms of speed though

it is already a lot faster than most pixel domain methods.

Frame 3 Frame 123 Frame 228

Figure 5 Sample tracking results for green pen

Frame 3 Frame 27 Frame 30

Figure 6 Sample tracking results for son

4. CONCLUSION

This paper has presented a novel robust tracking system using MV

and associated residual, spatial and textural confidence measures

that are derived from compressed video. The tracker is able to

track objects with varying size. In order to achieve robust tracking,

the three confidence measures are also used to detect object change.

I-Rectification is called for when object change is detected.

Besides fine tuning the parameters used in this system, there are

additional problems to be considered. We found using the variance

of the MV to track the object is sensitive to noise. This is

especially so when we try to track non-rigid objects where the size

prediction is easy to fail. Among our future modifications are to

make size prediction more stable and robust to noise.

REFERENCE

[1] R. Wang, H.J. Zhang, Y.Q. Zhang, “A confidence measure

based moving object extraction system built for compressed

domain” Proc. of ISCAS 2000 Geneva, Vol. 5, pp.21 – 24, 2000

[2] L. Favalli, A. Mecocci, F. Moshetti, “Object tracking for

retrieval applications in MPEG-2”, IEEE Trans. Circuits and

Systems for Video Tech., Vol. 10, Issue 3, pp.427 – 432, 2000

[3] D. Schonfeld, D. Lelescu, “VORTEX: video retrieval and

tracking from compressed multimedia databases”, Proceedings of

ICIP98, vol.3, pp. 123-127, 1998

[4] R. Achanta, M. Kankanhalli, P. Mulhem, “Compressed domain

object tracking for automatic indexing of objects in MPEG home

video”, Proc of ICME, Vol. 2, pp. 61 – 64, 2000

[5] M. Tekalp, "Digital Video Processing", Signal Processing

Series, Prentice Hall, 1995

[6] B.K.P. Horn, B.G.. Schunck, “Determining optical flow”,

Artificial Intelligence, Vol. 17, pp. 185-203, 1981

[7] L. Dong, S.C. Schwartz, “DCT-Based Object Tracking in

Compressed video”, to appear in ICASSP 2006

756

