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ABSTRACT

Distortion of matching pursuit is calculated in terms of matching
pursuit encoder parameters for uniformly distributed signals and
dictionaries. Then, the MP encoder is optimized using the ana-
lytically derived approximation for MP distortion. Our simula-
tion results show that this optimized MP encoder exhibits optimum
performance for nonuniform signal and dictionary distributions as
well.

1. INTRODUCTION

Many techniques have been proposed to improve the performance
of MP encoder by adapting the parameters of the encoder ([2, 3,
4]). However, due to lack of an accurate approximation for MP
distortion, these techniques are mostly based on training the en-
coder to find the optimal parameters. Even when the analytical
approach is taken, a very conservative upper bound for the MP
distortion is used to find the optimal parameters ([2, 3]). Addi-
tionally, this upper bound must be estimated through experiments
for different dictionaries. In this paper, we express the distortion of
matching pursuit in terms of MP encoder parameters for uniformly
distributed signals and dictionaries. This distortion is a much less
conservative upper bound for MP distortion than the one obtained
in [2, 3]. Moreover, we use our derived analytical relation to min-
imize MP distortion for a given rate and find the optimal number
of MP stages and step numbers of quantizers used to quantize the
inner product coefficients. Finally, we show that when the MP en-
coder is optimized for uniformly distributed signals and dictionar-
ies, it exhibits optimum performance for other signal distributions
and dictionaries (This is observed from experimental results).

2. MATCHING PURSUIT

Matching pursuit is a greedy algorithm that decomposes a signal
f into an overcomplete dictionary of bases [1]. At each stage of
matching pursuit the dictionary vector gγ that results in the max-
imum inner-product with the residual signal Rif is found. Then,
the residual signal is projected on gγ . This can be written as:

Rif = 〈Rif, gγ〉gγ + Ri+1f (1)

where Ri+1f is the new residual signal. At the first stage R0f is
replaced by the signal f . The matching pursuit iterations continue
based on equation (1) until the bit budget is exhausted. Therefore,
the signal decomposition can be written as:

f =

k−1∑
i=0

〈Rif, gγi〉gγi + Rkf (2)

3. DISTORTION OF MP FOR UNIFORM SIGNALS

In this section the average distortion of matching pursuit is calcu-
lated in terms of MP encoder parameters for uniformly distributed
signals and dictionaries.

Let us divide both sides of equation (1) by ‖Rif‖:
Rif

‖Rif‖ = 〈 Rif

‖Rif‖ , gγ〉gγ +
Ri+1f

‖Rif‖ (3)

and let:

�ri � Rif

‖Ri−1f‖ and ri � ‖�ri‖ =
‖Rif‖

‖Ri−1f‖ (4)

Equation (3) is the MP equation for the normalized signal Rif
‖Rif‖

and therefore, ri is the norm of the resulting residual signal when
matching pursuit is applied to the normalized signal. Substituting
‖R0f‖ by ‖f‖ and using equation (4) repeatedly, we can write:

‖Rkf‖ = ‖f‖r1r2...rk (5)

The norm of the residual signal at the kth stage is equal to the total
distortion of k-stage matching pursuit. Therfore:

DMP = ‖Rkf‖2 = ‖f‖2(r1r2...rk)2 (6)

In order to find the distortion of matching pursuit, the behavior of
the residual norm ri must be studied. In what follows, we first
approximate the Voronoi regions in which the vectors �ri are lo-
cated. Then, we find the probability distribution of ri and their
product (

∏k
i=1 ri). Once that probability distribution is available,

the expectation of DMP can be calculated.
Let us consider equation (3) and assume that the dimension

of the vector f is N . Therefore, Rif
‖Rif‖ is a vector on the surface

of a unit N -sphere where N -sphere is an N -dimensional hyper-
sphere. Moreover, since the dictionary elements are normalized N
dimensional vectors, they are also on the surface of the unit N -
sphere. Now suppose the negative of each of the dictionary vec-
tors is included in the dictionary. Therefore, finding the maximum
inner-product is equivalent to finding the minimum Euclidean dis-
tance. If the size of the original dictionary is M , the size of the
new dictionary will be 2M . Note that this assumption is only for
our modeling convenience and is not implemented in practice. In
fact, the sign bit of the inner product coefficient is now used to
encode the dictionary index for a dictionary of size 2M .

Now assume the signal is uniformly distributed on the sur-
face of the N -sphere. Since the signal is uniform, for the best
performance, the dictionary vectors must be uniformly placed on
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Fig. 1. (a) 3-dimensional Voronoi region is approximated by a two
dimensional circle with the same volume as the surface area of
the Voronoi region (in two dimensions, Volume=πR2, area=2πR)
(b) Geometric interpretation of the residue �ri. (c) �ri is uniformly
distributed in the volume of the 2-dimensional sphere.

the surface of the N -sphere. This means that the Voronoi regions
for each dictionary vector must be identical and therefore have the
same area. Moreover, to maximize uniformity, the Voronoi regions
must approach the shape of a spherical cap.

If the total surface area of the unit N -sphere is AN , since there
are 2M Voronoi regions and the Voronoi regions are identical, the
surface area of each of the Voronoi regions will be S = AN

2M
. For

the optimum dictionary these shapes must be as close as possible
to the shape of a spherical cap and their surface areas must be as
close as possible to S. Therefore, when the number of elements in
the dictionary is high, it is reasonable to approximate the Voronoi
regions by N − 1 dimensional spheres with the same volume as
the surface area of the Voronoi regions (S). This is shown in figure
1.(a). Thus, using the equations for the volume and surface area of
hyper-spheres [5], the volume of these N − 1 dimensional spheres
can be written as (the radius of the unit N -sphere is 1):

VN−1 = S =
AN

2M
⇒ π

N−1
2

(N−1
2

)!
RN−1 =

Nπ
N
2

(N
2

)!2M
(7)

Therefore, the radius of the N −1 dimensional sphere is found by:

R =

(√
πN(N−1

2
)!

2(N
2

)!

) 1
N−1

M− 1
N−1 (8)

Now that the Voronoi regions are modelled for the uniform dic-
tionary, the distribution of the residual norms (ri) can be found.
According to (3) and (4):

Ri−1f

‖Ri−1f‖ = 〈 Ri−1f

‖Ri−1f‖ , gγ〉gγ + �ri (9)

Therefore, �ri is the residual vector for the normalized signal Ri−1f
‖Ri−1‖ .

Hence, �ri points from the approximation of the normalized sig-
nal to a point on the Voronoi region as shown in figure 1.(b). The
Voronoi regions are approximated by an N−1 dimensional sphere
with radius R. Since the input signal is uniformly distributed on
the surface area of a unit N -sphere, we can assume the residue vec-
tor �ri is uniformly distributed in the volume of the (N − 1)-sphere
with radius R as shown in figure 1.(c).

With this assumption, ri = ‖�ri‖ will be the distance of the
point corresponding to vector �ri to the center of the sphere. Let ri

be the random variable corresponding to this distance. We can ob-
tain the probability distribution of ri assuming the residual signal
is uniformly distributed in the volume of the (N − 1)-sphere:

Fri(ri) = P (ri ≤ r) =

π
N−1

2

( N−1
2 )!

rN−1
i

π
N−1

2

( N−1
2 )!

RN−1

=
rN−1

i

RN−1
(10)

Therefore:

fri(ri) =
dFri(ri)

dri
=

(N − 1)rN−2
i

RN−1
0 ≤ ri ≤ R (11)

Now in order to solve equation (6), the probability distribution
function of a new random variable corresponding to r1r2...rk must
be found. First, we define a new random variable r′i as:

r′i � ri

R (12)

Therefore, the PDF of r′i can be computed as [6]:

fr′i(r
′
i) = (N − 1)r′N−2

i 0 ≤ r′i ≤ 1 (13)

From equations (6) and (12), the distortion of k-stage MP is:

DMP = ‖f‖2R2k(r′1r
′
2...r

′
k)2 (14)

Thus, in order to find DMP, the PDF of r′1r
′
2...r

′
k must be calcu-

lated. We use lemma 1 to find this probability distribution.

Lemma 1 Suppose x and y are independent random variables
with PDF’s:

fy(y) = αyβ 0 ≤ y ≤ 1, fx(x) = axβ(ln x)ρ−1 0 ≤ x ≤ 1
(15)

Let z = xy. Then:

fz(z) = −αa

ρ
zβ(ln z)ρ 0 ≤ z ≤ 1 (16)

where α, β, a and ρ are constants.

Proof: Let w be an auxiliary random variable defined by w =
x. The determinant of the Jacobian matrix is J(x, y) = −w.
Therefore the PDF of z can be written as [6]:

fz(z) =

∫
fzw(z, w)dw =

∫
1

|w|fxy(w,
z

w
)dw (17)

For nonzero probability distribution functions, x and y must be
between 0 and 1. Therefore, 0 ≤ w ≤ 1 and 0 ≤ z

w
≤ 1. This

yields the boundaries of the integral equation as z ≤ w ≤ 1. The
independence of the two random variables implies that:

fz(z) =

∫ 1

z

1

w
fx(w)fy(

z

w
)dw (18)

Substituting the PDF’s of x and y from (15) into (18):

fz(z) =

∫ 1

z

a

w
wβ(ln w)ρ−1α

zβ

wβ
dw = aαzβ

∫ 1

z

(ln w)ρ−1 dw

w
(19)

Therefore, the solution of the integral equation is:

fz(z) = −αa

ρ
zβ(ln z)ρ 0 ≤ z ≤ 1 � (20)
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From equation (13) the PDF’s of r′1 and r′2 have the same form as
equation (15) with α = a = N − 1, β = N − 2 and ρ = 1 and
r′1 and r′2 are independent. Therefore, using Lemma 1, the PDF of
z2 � r′1r

′
2 can be written as:

fz2(z2) = −(N − 1)2zN−2
2 (ln z2) 0 ≤ z2 ≤ 1 (21)

Equation (21) has the same form as the PDF of x in Lemma 1
with a = −(N − 1)2, β = N − 2 and ρ = 2. The PDF of r′3
(equation (13)) has also the same form as the PDF of y in Lemma
1 with α = N − 1 and β = N − 2 and r′3 and z2 = r′1r

′
2 are

independent. Thus, the PDF of z3 � z2r
′
3 = r′1r′2r′3 can be

found using Lemma 1:

fz3(z3) =
(N − 1)3

2
zN−2
3 (ln z3)

2 0 ≤ z3 ≤ 1 (22)

Continuing this for k times, the PDF of zk � r′1r
′
2...r

′
k will be:

fzk (zk) =
(N − 1)k(−1)k−1

(k − 1)!
zN−2

k (ln zk)k−1 0 ≤ zk ≤ 1

(23)
Now E(zn

k ) =
∫ 1

0
zn

k fzk (zk)dzk can be computed by:

E(zn
k ) =

∫ 1

0

zn
k

(N − 1)k(−1)k−1

(k − 1)!
zN−2

k (ln zk)k−1dzk (24)

Let y = −(n + N − 1) ln zk. Therefore, zk = e−
y

n+N−1 , dzk =

−e−
y

n+N−1 dy/(n + N − 1) and 0 ≤ y ≤ ∞. Thus:

E(zn
k ) =

(N − 1)k
∫∞
0

yk−1e−ydy

(k − 1)!(n + N − 1)k
=

(N − 1)k Γ(k)

(k − 1)!(n + N − 1)k

(25)
Since Γ(k) = (k − 1)! for integer k, the expectation of zn

k is:

E(zn
k ) = (

N − 1

n + N − 1
)k (26)

Substituting (26) into (14), the average distortion of k-stage match-
ing pursuit for uniform signals and dictionaries can be found by:

DMP = ‖f‖2R2k(
N − 1

N + 1
)k (27)

4. OPTIMIZATION

The total distortion of MP encoder is the distortion caused by the
remaining residual signal calculated by equation (27) plus the dis-
tortion caused by quantizing the inner product coefficients at each
stage. Suppose the inner product coefficients are quantized by a
uniform quantizer with q quantization steps. The distribution of
inner product coefficients is rather complex. In this paper we as-
sume the coefficients are uniformly distributed in the range of the
quantizer. Our simulation results for random signals show that this
assumption does not cause a significant error in our calculations.
With this assumption, the quantization distortion can be written as:

DQ =

k−1∑
j=0

‖f‖2

12q2
=

k‖f‖2

12q2
(28)

The rate of a k-stage MP encoder can be found by:

Rate = k log2 q + k log2 M (29)

Now the problem is to find the optimum number of MP stages k
and quantization levels q to minimize the distortion for a given
signal dimension, dictionary size and rate budget. The Lagrangian
multiplier method is used to solve this optimization problem:

J(λ) = DMP + DQ + λRate (30)

where λ is the Lagrangian multiplier. Substituting (27), (28) and
(29) into (30), the Lagrangian cost function can be formulated as:

J(λ) = ‖f‖2R2k(
N − 1

N + 1
)k +

k‖f‖2

12q2
+ λ(k log2 q + k log2 M)

(31)
It is easy to show that:

∂J(λ)

∂q
= 0 ⇒ qopt =

√
‖f‖2 ln 2

6λ
(32)

Substituting equation (32) into equation (28) yields:

DQ =
kλ

2 ln 2
(33)

The optimal number of MP stages (k) can be found by solving:

∂J(λ)

∂k
= ‖f‖2R2k

(
N − 1

N + 1

)k

ln

(
R2(

N − 1

N + 1
)

)

+
λ

2 ln 2
+ λ log2

√
‖f‖2 ln 2

6λ
+ λ log2 M = 0 (34)

Thus:

∂J(λ)

∂k
= 0 ⇒ kopt =

ln

⎛
⎝ λ

2 ln 2+λ log2

√
‖f‖2 ln 2

6λ
+λ log2 M

−‖f‖2 ln(R2( N−1
N+1 ))

⎞
⎠

ln(R2(N−1
N+1

))
(35)

Now that the optimum values for k and q have been found, the next
step is to find the optimal λ that satisfies the bit budget constraint
and minimizes equation (31). Assuming the bit budget is fixed and
is denoted by Rbudget:

Rbudget = k log2 q + k log2 M (36)

Since both k and q are functions of λ, equation (36) can be solved
numerically to find λ for any value of M , N and Rbudget.

5. SIMULATION RESULTS

In this section, first the accuracy of our analytical result for the MP
distortion is verified by comparison to practical matching pursuit
encoders. Then, our optimization scheme is evaluated and at the
end, the application of our optimization method for nonuniform
signals and dictionaries is discussed.

Figure 2.(a) shows the rate distortion curve of the matching
pursuit encoding of 8 dimensional random samples with a dic-
tionary of 128 random elements. The inner product coefficients
are quantized by a 3 bit quantizer and the rate distortion curve is
compared by what is predicted by equations (27) and (28) (D =
DMP + DQ). As can be seen in the figure, our prediction is very
close to the experimental results although a random dictionary is
used instead of the optimal dictionary with elements uniformly dis-
tributed on the unit N -sphere. Figure 2.(b) compares the experi-
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Fig. 2. (a) Comparison of rate distortion curves for N = 8, M = 128 and q = 8. (b) Comparison of distoritons predicted by our equations
and experimental data for N = 16, k = 5 and q = 32. (c) Rate distortion curves for optimum MP encoder and other MP encoders

mental and predicted distortions for a 5-stage matching pursuit en-
coder using a 5 bit quantizer. The input is 16-dimensional random
signal and the dictionary elements are random. The distortion is
obtained for different dictionary sizes and as shown in figure 2.(b)
the experimental distortion is very close to our prediction which
proves the accuracy of our calculations.

Now that the accuracy of our model is verified, the optimized
MP encoder must be evaluated. Figure 2.(c) shows the predicted
distortions for several MP encoders along with the rate distortion
curve of the optimized MP encoder. As shown in the figure, the
optimized encoder selects the optimal number of MP stages and
quantization step numbers to provide the best performance among
all encoders for different bit rates.

Rate k q PSNR

0.37bpp 2* 4* 25.06dB
0.37bpp 1 16384 24.14dB

1.01bpp 5* 8* 27.17dB
1.00bpp 4 64 26.47dB
1.03bpp 6 2 26.91dB

1.42bpp 7* 8* 27.93dB
1.50bpp 6 64 27.80dB
1.50bpp 8 4 27.77dB

1.97bpp 9* 16* 28.61dB
2.00bpp 8 64 28.47dB
2.03bpp 10 8 28.60dB
1.97bpp 7 256 28.21dB

Rate k q PSNR

1.01bpp 5* 8* 24.96dB
1.00bpp 4 64 24.81dB
1.03bpp 6 2 24.17dB

0.81bpp 4* 8* 24.61dB
0.84bpp 3 256 24.34dB
0.86bpp 5 2 24.03dB

1.97bpp 9* 16* 25.78dB
2.00bpp 8 64 25.78dB
2.03bpp 10 8 25.71dB
1.97bpp 7 256 25.68dB

Table 1. Left table: results for Hill, Right table: results for Lenna.

Although we have only considered uniformly distributed signals
and dictionaries during derivation of our equations, our simulation
results show that our optimized MP encoder exhibits optimum per-
formance for other signal distributions and dictionaries. We have
compared our optimal MP encoder with MP encoders with differ-
ent number of MP stages and different quantizers for two images
(256 × 256 Lenna and Hill images). The dictionary is the Gabor
dictionary as suggested in [4] with 1024 elements and the block
size is 8 × 8. Table 1 compares the PSNR’s of different MP en-
coders for different bit rates. The optimum encoder according to
our optimization in section 4 is indicated in the table by a star for
each bit rate. As shown in the tables the PSNR obtained by the op-
timum MP encoder is the highest among other possible encoders
in all cases. This shows that although our optimized MP encoder is
derived for uniform signals and dictionaries, it can be used to op-

timize MP encoders for other signal distributions. One reason for
this is that uniform signals have the highest entropy among other
distributions for discrete signals and consequently are among the
most difficult ones to compress. Therefore, the MP distortion for
uniform signals is generally higher than the distortion for other sig-
nal distributions. In fact, equation (27) presents an upper bound for
the MP distortion of nonuniform signals. In other words, the aver-
age distortion for the worst signal distribution is the upper bound
for the average distortion of arbitrary signal distributions. Since
this upper bound is not very conservatively selected (in contrast to
the one used in [2] which considers the worst case scenario at ev-
ery stage of matching pursuit for arbitrary dictionaries), it can be
used to efficiently optimize the MP system for other distributions.
Another advantage of our optimization method is that it does not
require any adaptation and can be mathematically computed as op-
posed to methods used in ([2, 3]).

6. CONCLUSION

In this paper, matching pursuit distortion is analytically expressed
in terms of MP encoder parameters for uniform signals and dic-
tionaries. This analytically derived distortion was used to find the
optimal MP encoder. Our simulation results showed that not only
the analytical derivation is very accurate, but also the optimum MP
encoder for uniformly distributed signals exhibits optimum perfor-
mance for other signal distributions and dictionaries.
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