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Abstract— A progressive and scalable, region of interest (ROI) image
coding scheme based on matching pursuits (MP) is presented. Matching
pursuit is a multi-resolutional signal analysis tool and can be employed
in order to progressively refine the quality of a set of selected regions of
an image up to a specific grade. The computational complexity of this
analysis method can be reduced by decreasing the size of MP dictionary.
Thus, the proposed method provides a trade off between complexity, rate,
and quality. By the suggested scheme, regions of an image with higher
receiver’s priority are refined in an interactive manner. The transmitter
sends an initial coarse version of the image. Then, he receiver transmits
its preferred ROI parameters. Afterwards, the reconstructed image is
refined according to the ROI parameters, in a progressive way.

I. INTRODUCTION

For a decent image browsing experience, efficient delivery of large

high resolution images is essential. On the other hand, because of

increasing number of Internet users and their transmitted data rate,

the available bit-rate for each application has to be restricted. With

a limited bit-rate, maintaining the original high visual quality for all

parts of a large high resolution image is a time consuming process. To

address this problem, a selection of regions of interest of an image

(according to the receiver) can be transferred with higher quality,

while the remainder of the image is sent at a lower quality.

Matching pursuit is a greedy signal analysis algorithm in which a

signal is iteratively decomposed into a linear expansion of waveforms,

chosen from an over-complete dictionary [1], [2]. Assume D =
{gγ}γ∈Γ is an over-complete set with finite number of normalized

elements (‖gγ‖ = 1) in L2(R) that spans a space of dimension N
(Γ is a finite dictionary index set of ND elements). Each vector f
of the space can be projected on a dictionary element gγ ∈ D to

approximate the vector in that direction. Matching pursuit algorithm

is based on the following residual vector update formula

Rnf =< Rnf, gγn > gγn + Rn+1f (1)

where R0f = f , < Rnf, gγn > is the inner product of Rnf with

dictionary element gγn , and Rn+1f is the residual vector of Rnf
in gγn direction. Matching pursuit algorithm selects a dictionary

element which yields minimum residual energy (‖Rn+1f‖2). After

m iteration of matching pursuit analysis we have :

f =

m∑

n=0

< Rnf, gγn > gγn + Rm+1f (2)

The most computationally expensive part of MP algorithm is the

inner product calculation (< Rnf, gγn >) in each iteration and for

all dictionary elements. Taking an inner product with gγ on both side

of (1) yields the following updating equation:

< Rn+1f, gγ >=< Rnf, gγ > − < Rnf, gγn >< gγn , gγ > (3)

In equation (3), < Rnf, gγn > and < Rnf, gγ > are computed at

the previous iteration. Dictionary inner products < gγn , gγ > may be

calculated and stored in advance of MP analysis to be used like a look

up table. With the above updating formula, the MP computational cost

can be reduced drastically [1]. In this paper we call this approach

Mallat’s method.

(a) (b)

Fig. 1. (a) Schematic block diagram of matching pursuit encoder and decoder
(b) More detailed block diagram of (n + 1)th stage of MP analyzer

II. MP BASED ROI IMAGE CODING

A schematic diagram of MP encoder and decoder is shown in fig.

1(a). An input signal X is applied to the first MP analysis stage

(MP1). Here the signal is compared with all dictionary members

gγ and an element gγ1 , resulting an inner product with the max-

imum magnitude, is chosen. Since we can only transmit analysis

parameters with finite precision, the inner product coefficient C1

is then quantized to Ĉ1. In order to reduce the quantization error

effect of inner product coefficients on MP analysis performance, the

quantized version of inner product coefficient Ĉ1 is then employed

to calculate the residual signal R1X = X − Ĉ1 gγ1 . The quantized

coefficient Ĉ1 along with the index of the selected dictionary element

γ1 is sent to the decoder. Now, R1X is the input to the second MP

analysis stage (MP2). The resulting Ĉ2 and γ2 are transmitted and

R2X = R1X − Ĉ2 gγ2 is used for the next MP analysis stage. This

procedure continues and the corresponding analysis parameters are

sent. Fig. 1(b) illustrates the above process at the (n + 1)th MP

analysis stage. As shown in this figure, the scalar quantizer of each

stage is adapted based on the standard deviation of the inner product

coefficients in that MP analysis stage. At the receiver side the signal

X is reconstructed using the received information Ĉi, and γi by the

following linear combination formula:

X̂ =

m∑

i=1

Ĉi gγi (4)

where m is the number of MP analysis stages.
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A. Progressive ROI refinement
Since matching pursuit algorithm is a multi-resolutional signal

analysis method, it is a proper choice for progressive ROI image

coding. The key idea for MP based ROI image coding is to apply

more MP analysis stages and extract more structural features for the

ROI rather than the background. To apply this intuitive idea, an image

is divided to NB square image blocks. Using the mean value of each

image block, a coarse version of the image is sent to the receiver.

The receiver then indicates his/her point(s) of interest (i.e. center(s) of

ROI(s)) and transmits the corresponding coordinates of the point(s)

to the transmitter. The level of interest for the jth image block is

considered to be a function of dj , the minimum distance of the center

point of the block from the point(s) of interest, i.e.,

dj = min
i

d
(i)
j i = 1, 2, ..., NROI j = 1, 2, ..., NB (5)

where d
(i)
j is the distance of the jth image block from ith point

of interest and NROI is the number of points of interest. To refine

the quality of the initial coarse image with emphasis on ROI in a

progressive way, the encoder examines all the image blocks to see if

the distances of their center points from the point of interest (dj) is

less than an initial distance value of R1. If dj > R1, no refinement

information is sent for jth image block. If dj ≤ R1 , the residue of

the jth image block with respect to the existing version of it at the

receiver is approximated using the first stage of the MP analysis. To

further improve the quality of the ROI, using the relation

Rk+1 = α × Rk α ≥ 1 , k = 1, 2, . . . , NS (6)

where NS is the maximum number of the available MP stages, the

encoder updates the Rk with Rk+1. The above routine is repeated

for all image blocks using Rk+1 as the new distance measure. This

process results in generation of successive MP refinement layers

of the image with more emphasize on the region of interest. The

updating multiplier α, in equation (6), specifies how gradual the

image quality is reduced from ROI toward the background. This

parameter plays an important role in emphasizing the ROI visual

information. An appropriate value has to be assigned to α in order

to meet the image transmission bit budget and, at the same time,

give a desired level of reconstruction fidelity to the ROI compared

to the background. If the ROI has an absolute transmission priority

and the bit budget is small, α can be set to 1. This implies that the

refinement bits are sent merely for the region of interest. If a larger

value is assigned to α the distance metric Rk grows more rapidly and

more image blocks become eligible for the refinement. The virtual

circle with radius R1 and centered at the point of interest is the

initial region which its image blocks are enhanced with the highest

priority. Since a bigger R1 means more initial image blocks with this

privilege, there would be no ROI if R1 exceeds the size of the image.

Practical values for R1 can be in the range of 1/10 to 1/2 of image

size. Thus, in case of low bit budget or low bit-rate transmission, α
is set close to 1 and R1 is selected in the above mentioned range

and a higher priority of transmission will be given to the ROI image

blocks.

The complete bit stream generated by above algorithm conveys

refinement information for all image blocks with a final quality

dictated by the maximum MP analysis stages. The bit stream can

be truncated whenever a desirable image quality is provided at the

receiver. In this case, the reconstructed image has better quality at

region(s) of interest.

The proposed MP-based ROI image coding method allows chang-

ing the position of point of interest without losing the previously

Fig. 2. Dictionary elements usage frequency for different MP stages when
MP applied on a set of 8 different images

received refinement data. In order for the transmitter to handle the

ROI change, the number of MP stages that each image block has

been analyzed with, should be recorded at the encoder. Receiver

sends the location of the new point of interest. After this interaction,

the transmitter sends the refinement data for image blocks around

the newly defined point of interest without the need to retransmit

the already sent information. More specifically, let P
(−1)
j denote the

number of MP stages by which the jth block is analyzed. Let dj

represent the distance of the jth image block from the new point of

interest. If dj < Rk, encoder checks P
(−1)
j and if P

(−1)
j ≥ k no

transmission for jth image block is required, otherwise, the residue of

the image block is approximated using the kth stage of the matching

pursuits and the index of the chosen dictionary element and the

corresponding inner product coefficients are transmitted and P
(−1)
j

is updated.

B. Reduction of computational complexity in MP-based ROI image
coding

The size of MP dictionary has a direct effect on the computational

complexity of the MP algorithm. A larger dictionary requires more

bits to represent the dictionary index than that for a smaller one. On

the other hand, a properly designed larger dictionary would better

represent signal structures. Thus, when we choose a dictionary size

for MP analysis, there are trade-offs between rate, quality, and com-

plexity. Here, a method for reducing the computational complexity of

MP-based ROI image coding is proposed. A huge initial dictionary

is used for MP analysis of a large number of test images. According

to the residual patterns of image blocks, in each MP stage, different

subsets of the dictionary are more often used. We can notice this fact

by observing usage frequency of dictionary elements. Fig. 2 shows

the usage frequency of dictionary elements as a function of matching

pursuit stage number when MP is applied to a set of 8 different

images for a Gabor dictionary [3] with 6400 element of 8×8 pixels.

As it can be seen from this figure, the usage frequency of dictionary

elements is largely skewed and a significant number of elements are

rarely used in each stage of MP analysis. Using this prior knowledge,

the computational complexity of MP-based ROI image coding can be

reduced. The idea is to sort the dictionary for each MP stage based

on the frequency of usage of dictionary elements for that stage. The

original and sorted dictionaries have exactly the same elements, but

elements of the latter are sorted by their frequency of usage in a

descending manner. According to our rate-quality-complexity choice

of working point, an Nd element subset of the original dictionary

can be selected in each MP stage simply by taking Nd first elements
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of the corresponding sorted dictionary. Only the corresponding sub-

dictionary is searched for the most similar element to the residual

signal at each MP stage. Since saving multiple sorted versions of the

original huge dictionary for each MP stage is inefficient, in terms of

memory requirement, for each stage of matching pursuit, a transition

vector is used to map the index from the original dictionary to the sub-

dictionary for that stage. This transition vector reduces the storage

requirement for sorted dictionary and dictionary inner products (used

in Mallat’s fast algorithm) to only the original ones. The ith element

of the transition vector for the kth MP stage is a pointer to an element

in the original dictionary which is identical to the ith element in the

sorted dictionary for the kth MP stage. In other words, in order to

point to the ith element of the sorted dictionary in kth MP stage

the index in the original dictionary (iorig) can be found using the

following relation:

iorig = transk(i) (7)

In (7), transk(·) represents the transition vector. The formula can

also be used when the elements of the dictionary inner product matrix

are required for the Mallat’s fast matching pursuit algorithm. To

point to the element (i, j) of the inner product matrix of the sorted

dictionary at kth MP stage, we simply find the element (iorig, jorig)

of inner product matrix associated to the original dictionary, without

the necessity of storing another version of the original huge ND×ND
matrix (ND is the number of elements in the original dictionary). This

task can be done using

(iorig, jorig) = (transk(i), transk(j)) (8)

III. EXPERIMENTAL RESULTS

In this section we present the simulation results for our proposed

MP based ROI image coding technique. Here, we have used a 2D

Gabor dictionary with 6400 elements. The dictionary is similar to

one used in [3].

Quantization of the inner product coefficients is an integral part

of the proposed MP based ROI image coding. Uniform, NQ level,

mid-tread scalar quantizers [4], [5] with step sizes adapted to the

standard deviation of inner products in each MP stage are employed.

The statistical data for this adaption is extracted from MP analysis of

a set of 8 different images (”news” image is not one of those images).

The granular region [5] of the quantizer is from −3σn to 3σn, where

σn is the standard deviation of inner product coefficients at nth MP

analysis stage. Fig. 3 demonstrate the progressive image enhancement

using MP-based ROI image coding and the fact that the proposed

scheme can handle ROI changes. To apply our method of ROI image

coding, the image is divided into 8×8 non-overlapping image blocks.

The MP dictionary contains 6400 2-D Gabor elements with the size

of 8 × 8. Here the MP analysis is restricted to maximum 5 stages.

MP inner products are quantized with a 4-bit (NQ = 16) adaptive

uniform scalar quantizer. Fig. 3(a) shows the original monochrome 8

bpp “news” image with indicated regions of interest. The left hand

side region is the initial ROI. Fig. 3(b) is the coarse version of “news”

image formed by mean value of each image block at 0.0625 bpp. The

receiver reconstructs this version of image and indicates the region

of interest by sending the coordinates of the point of interest to the

transmitter. At this stage, the transmitter starts sending refinement bits

generated by the proposed MP based ROI image coding. In figure

3(c), the reconstructed image at the time of ROI change is shown.

The analysis parameters are R1 = 0.125 (the unit here is the width of

the image), and α = 1.4. The image is progressively reconstructed

at 0.1424 bpp. As time passes, more refinement bits participate in

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Changing the point of interest during the course of transmission.
(a) Original monochrome 288 × 352 pixels “news” image represented by 8
bpp. The region of interest is indicated by a circle. (b) A coarse version of
image, generated by mean value of each image block, is sent to the receiver
with 0.0625 bpp. (c) The refinement information according to the first ROI
(left hand side ROI) is transmitted. At this point the receiver changes the ROI
choice to the right hand side ROI. MP-based ROI analysis parameters are:
α = 1.4, and R1 = 0.125. The image is reconstructed at 0.1424 bpp. (e)
Completely refined image by 5 stages of matching pursuit analysis bit-stream
at 1.3628 bpp. (f) Spatial status of MP stages for part (d)

image enhancement with the emphasis on the second ROI. Fig. 3(d)

shows the reconstructed image after receiving some refinement bits

according to the second choice of ROI at 0.4544 bpp. In fig. 3(e), we

receive the complete bit-stream at 1.3628 bpp. In this figure, all image

blocks are enhanced with 5 stages of MP refinement bits. Fig. 3(f)

demonstrates the number of MP analysis stages that have been used

in different locations of the image. This MP stage status presentation

is associated with fig. 3(d).

The proposed MP based ROI image coding is capable of providing

compromises among bit rate, quality of the reconstructed image,

and the computational complexity of MP analysis. It is essential to

know the inter-relation among rate, quality, and complexity in order

to choose the best MP analysis set-up. Following are experimental

results which provide this essential knowledge which is brought by

MP analysis and synthesis of a set of 8 different images. The analysis

parameters, based on the proposed MP based ROI image coding, are

α = 1.4, and R1 = 0.125. For different stages of MP algorithm, the

original dictionary (i.e., 6400-element 2-D (8× 8) Gabor dictionary)

is sorted and truncated to a dictionary of size ND = 2BD elements

of 8 × 8, 2-D Gabor functions.

Fig 4 shows the quality variation of the reconstructed ROI coded

images for ROI region and for whole image as a function of number
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Fig. 4. PSNR versus dictionary size and quantization step number for a fixed
rate of 0.3 bpp

of quantization steps (NQ = 2BQ ) and MP dictionary size (ND =
2BD ) for a given fixed rate of 0.3 bpp. According to this figure,

quantization of inner product coefficients with 3 or 4 bits results

in better quality performance when a fixed rate, i.e. 0.3 bpp, is

targeted. As it can be seen from the graphs, for a subset of original

dictionary with just 4 elements, the quality performance is far worse

than the other dictionary sizes. In this case, the dictionary is under-

complete and not a good representative of all features of image

blocks. According to this figure, the quality performance for ND =
64, 256, 1024, and 4096 are comparable. Although bigger dictionary,

i.e. more complexity, almost always yields better quality performance,

the computational cost sometimes is too much, since adding one more

bit to the dictionary index bits means doubling the computational

burden. Figures. 5 illustrates the quality of the output image of the

proposed scheme as a function of bit-rate and the inner product

coefficients quantization step number (BQ). Here the dictionary size

is set to ND = 29 = 512. According to this figure, the worst

quality is obtained when the coarse version of image is sent with

minimum number of quantization steps, i.e. BQ = 1. Having only

the coarse version of image at the receiver, the qualities at ROI and the

whole image are almost the same. Refinement information separates

the quality surfaces and alleviates ROI quality faster than the whole

image. These two surfaces approach each other when the whole image

is refined with maximum number of MP stages. According to this

figure, the best choice of quantization step number is NQ = 24 = 16.

Figures 6 demonstrate the rate-distortion behavior of the proposed

ROI image coding scheme as a function of dictionary size. For this

figure, the number of quantization steps is fixed to NQ = 24 = 16.

According to this figure, MP dictionary of very small size yields little

quality improvement with refinement bits. On the other hand, a large

MP dictionary results in very rapid quality improvement by receiving

refinement bits especially for the ROI. According to this figure, the

rate-distortion performances for large MP dictionaries, e.g. BD =8 to

12, are close. When the computational burden is strictly limited and

the bit-budget is fixed, decrementing BD by one bit means reducing

the computational cost to half.

IV. CONCLUSION

In this work we introduced a new ROI image coding approach

based on matching pursuits. The method interactively allows the

transmitter to send MP analysis data with the emphasis on ROI(s).

The ROI parameters include the radius of initial virtual circle (R1)

and the updating multiplier (α). Depending on the bit-budget, the

Fig. 5. Rate-distortion performance of the MP based ROI image coding as
a function of quantization step number of the MP inner product coefficients
when the dictionary size is fixed to ND = 512

Fig. 6. Rate-distortion behavior of the MP-based ROI image coding scheme
as a function of MP dictionary size

degree of importance of the ROI(s), and the computational capability

of the transmitter, a proper ROI parameter set and MP dictionary size

can be selected.

The proposed MP based ROI image coding is computationally

unbalanced and the computation cost at the decoder is much lower

than that at the encoder. For the case that the receiver is not very

well equipped, the proposed scheme concentrate the complexity into

the transmitter and leaves the receiver very simple.
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