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ABSTRACT 

This paper presents a novel fuzzy stochastic Kalman 

filter for compression of digital images. In particular, it is 

shown that the state evolution of the synthesis coefficients 

of any Discrete Wavelet Transform (DWT), in presence of 

coding degradation, may be described fuzzily. The novelty 

of this description is that, unlike other fuzzy based methods, 

it does not require a predefined membership measure. The 
fuzzy representation is further characterized by a stochastic 

nominal value and an interval of uncertainty. Furthermore, 

traditional DCT based coding is judicially applied to the 

smooth regions of the DWT. It is shown that such a 

framework allows for an efficient coding of images. 

1. INTRODUCTION 

The similarity of the continuous sections of an image, in 

various DWT depths, has inspired plethora of image 

compression methods. These methods range from heuristic 

[1] to fractal [4] and fuzzy [2]. In this paper, we resort to the 

complementary aspects of fuzzy and stochastic systems to 

model and control the uncertainties introduced due to 

compression process. We will find it convenient to proceed 

under the umbrella of the state evolution description of the 
DWT coefficients. To this end, the Fuzzy Stochastic 

Kalman Filter (FSKF) is introduced in Section 2. Section 3 

presents the FSKF algorithm along with representative 

examples. Finally, Section 4 concludes this paper with the 

summary of the current work and possible future venues. 

2. FSKF 

A deterministic state description of the DWT analysis 

and synthesis operations, with H0 and H1 as scale and 

wavelet analysis filters; F0 and F1 as their synthesis 

counterparts, is presented in (1).  
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where
M

k 1
0

−F ,
Mk 1

0
−

H and xk are defined in (2). 

(
Mk 1

1
−F ,

Mk 1
1

−H , xk-1 and wk-1 are defined, similarly.)  Also, 

F0
k-1 and H0

k-1 are defined in (3). In (1), (2) and (3) n refers 

to the time index and k refers to the resolution depth. N is 

the length of the filter and M is size of the observed signal. 

It is noted that this model explicitly takes into account the 

intra-dependencies of the M neighboring samples. 
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Equation (1) can be readily extended to the 2-D case, by 
the separable extension of the analysis and synthesis filters, 

as noted in (4). In (4) the S and I subscripts indicate the 

significant and insignificant wavelet filters, where 

separation of the subbands to significant, i.e. xk-1, and 

insignificant, i.e. wk-1, is based on the energy content of the 

respective subbands. Superscripts i to l refer to significant 

subbands, whereas superscripts a to d refer to insignificant 

subbands. NS is the number of significant sub-bands. GS
k-1,

GI
k-1, LS

k-1, xk-1, and wk-1 are defined in (5). NI=4-NS is the 
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number of insignificant subbands. Furthermore, the 

separable synthesis filters are defined as in (6). (Analysis 

filters are defined in a similar manner.) 
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Impairments and uncertainties are introduced in (4) due 

to quantization or when one attempts to perform either inter 
or intra band predictions of the DWT coefficients. The goal 

of the FSKF is to construct an implicit fuzzy membership 

measure, as a function of the DWT coefficients and depth, 

such that for a prescribed quality, the overall reconstruction 

quality is insensitive to the approximations of the DWT 

coefficients. To this end, the membership measure is 

described by its α-cuts [3] at different depths. These in turn 
are described by a nominal value and an interval of 

uncertainty. The effects of the quantization and prediction 
are then modeled by additive stochastic noise on the 

nominal values and expansion of the intervals of 

uncertainty. A Kalman filter is then developed that attempts 

to minimize the prediction error of the nominal value, while 

simultaneously minimizing the interval of uncertainty of the 

error signal. Furthermore, to avoid application of interval 

arithmetic [6], intervals are modeled as total differentials 

[7]. We begin by expressing the objective function (7), in 

terms of its nominal value, Pk
N, and its total differential, dPk,

as noted in (8). 

( )kk tr Px minargˆ = ,                        (7) 

where tr(.) is the trace operator. 
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where [ ]T

kk
eeP Ek =  and ek is expressed as in (9)[5]. 
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where I is the identity matrix, ek
- is the a-priori error 

estimate, Kk is the optimal Kalman gain, vk is the nominal 

observation noise, 1
ˆ −kx and 1

ˆ −kw  are the estimated 

constituent signals at resolution level k-1. The optimal 

estimate, kx̂ , is of the form (10). 
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To obtain a convenient expression for the differential 

term of (8), it is noted that the differential of the posteriori 
error, dek, may be expressed in terms of its a-priori error, 

dek
-, as in (11). 
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where dek
- is as in (12) and abs(M) denotes a matrix that its 

elements are equal to the absolute values of the elements of 

the matrix M.
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 Noting that ( ) ( ) ( )11 −− +≤− k
Sk

k
Sk absabsabs LKILKI , an 

expression of for the upper bound of the differential of the 

posteriori error covariance matrix is obtained in (13). 
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where dPk
- is the differential of the a-priori error covariance 

matrix, as shown in (14).  
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To obtain the optimum Kalman gain, both terms of (8) 

are differentiated with respect to Kk, equated to zero and 

solved for Kk.  Differentiating the second term of (8) with 

respect to Kk, equating to zero, and solving the equation for 

Kk, (15) is obtained. 
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where superscript d refers to the differential, sgn(V) is the 

sign-vector of vector V, diag(V) is a square matrix, of 

appropriate size, whose diagonal elements are those of 

vector V. As for the differentiation of the first term of (8), it 

is noted that the DWT coefficient prediction may be 

performed on intra or inter bands. With respect to the 

former, it is seen that by introducing the memory parameter 

M in (1), the intra-band estimations are explicitly obtained. 
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With respect to the latter, the nominal values of insignificant 

bands, i.e. wk-1, are estimated based on the nominal values of 

the significant bands, xk-1. The estimation error of the 

nominal values is then modeled as a stochastic white 

Gaussian noise, as in (16). 
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where N
kx̂ is the nominal value of the estimated signal at 

depth k, N
k 1−i is the nominal estimation error of wk-1,

N
k 1−s is 

the nominal estimation error of xk-1 and N
k 1

ˆ −w is obtained by 

minimizing ( )[ ]N
k

N
k

T

trE 11 −− ee , i.e. the observable error. Noting 

(4), it is trivial to show that the optimal value of N
k 1

ˆ −w  is as 

shown in (17). 
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where M
-R is the right-inverse of matrix M. Furthermore, 

quantization effect is modeled by introducing noise to the 

observation process of (16), as noted in (18). 
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where x
k 1−Q and w

k 1−Q are the quantization noises of 

processes x and w. It is easy to show that the optimal 

Kalman gain of the nominal process is (19). 
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where x
k 1−R is the variance of x

k 1−Q and w
k 1−R is defined 

similarly. The overall Kalman gain is the sum of (15) and 
(19), as shown in (20). 

N
k

d
kk KKK +=    (20) 

Once the approximation signal x̂ is obtained, a residual 

error is formed as in (21)  

kkk xxr ˆ−=                      (21) 

At this point, a recursive refinement process, based on 

FSKF, is initiated to obtain the approximation of residual 

error kr , i.e. kr̂ .   

3. FSKF CODEC ALGORITHM 

The operation of the compressor may be broken into two 
parts: the encoder and the decoder. 

Encoder 

1. Perform 2-D DWT on the current input 

2. Based on energy content of the resulting subbands, 

identify the significant and insignificant subbands 

3. For the significant subbands identify the disparity 

ratio, i.e. the ratio of the difference between the 

maximum and minimum values of the subband to 

the total energy of the subband. 
4. If the disparity ratio is higher than a prescribed 

value, then perform 1-3 on each significant 

subband 

5. Else employing (10), (15), (17), (19) and (20) 

obtain the optimal estimate kx̂ , using the 

quantized DWT coefficients 

6. Obtain kr , as in (21), and perform 1-6  

7. Repeat till maximum depth is reached 

8. At the maximum depth, obtain the Discrete Cosine 

Transform (DCT) of the subbands and use the 

quantized coefficients for reconstruction. 

The motivation for step 8 is based on the observation 

that as the depth of the DWT tree increases, the subbands 
become smoother. Therefore, it is judicial to model such 

subbands based on their smoothness, i.e. using DCT, as 

oppose to their disparities, i.e. using FSKF. 

The decoder receives the topology of the tree, nominal 

value of each subband along with its range of variation, 

quantized coefficients of the elements that could not have 

been estimate and the quantized DCT coefficients of the 

maximum depth. 

Decoder 

1. Using the DWT topology, quantized coefficients at 

depth k-1, (10), (15), (17), (19) and (20) reconstruct 

the subbands at depth k
2. Repeat till depth 1 is reached. 

Simulation Results 

In this section, we provide a number of typical 

simulations to verify the applicability of the FSKF in image 

compression. In particular, comparison with similar, highly 

efficient, DWT based method, i.e. SPIHT [8] is provided. 

The results are tabulated in Table 1. The setup is based on 

the 8 tap Daubechies wavelet with maximum depth of 7. 1-4 

bit quantization is performed at all depths, depending on the 

variance of the subband. The disparity threshold is set to   

10-3. It is evident, from Figure 1 to Figure 6 that at extremely 

low bit rates, which include all side information, the FSKF 

achieves a high quality reconstruction. 

Table 1 SPIHT and FSKF Comparison 

Image 

Name 

Bit Rate 

[bpp] 

SPIHT 

PSNR [db] 

FSKF

PSNR [db] 

Lenna 0.103 24.38 25.88 

Barbara 0.133 22.00 26.20 

Baboon 0.165 20.61 23.66 

719



Figure 1. FSKF Compression 

Figure 2. SPIHT Compression 

Figure 3. FSKF Compression 

Figure 4. SPIHT Compression 

Figure 5. FSKF Compression 

Figure 6. SPIHT Compression 

4. CONCLUSION 

In this paper, the utility of the fuzzy stochastic modeling 

of the DWT, for the purpose of image compression was 

demonstrated. It was noted that at extremely low bit rate 

such an approach allows for a high quality reconstruction. 

Furthermore, unlike other fuzzy based methods, the 

membership measure is not predefined and is customized to 

a particular image and required PSNR. The future work will 

concentrate on application of the smoothing Kalman filter in 

FSKF. 
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