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Abstract. A new algorithm is presented for rate-fidelity op-
timal packetization of scalable source bit streams with un-
even erasure protection. It provides the globally optimal
solution for input sources of convex rate-fidelity function
and for a wide class of erasure channels, including channels
for which the probability of losing n packets is monoton-
ically decreasing in n, and independent erasure channels
with packet erasure rate smaller than 0.5. The time and
space complexities of the new algorithm are both O(NL),
where N is the number of packets and L is the packet pay-
load size, comparing to the O(NL2) time and space com-
plexities of the existing globally optimal solution. When ap-
plied to SPIHT compressed images, the results of the pro-
posed algorithm are virtually the same as the globally op-
tima.

1. INTRODUCTION

In multimedia streaming over the Internet, the quality of ser-
vice (QoS) henges on how well the problem of packet losses
is dealt with. Optimal packetization of scalable source se-
quence with uneven erasure protection (UEP) offers a prin-
cipled solution to the problem.

Scalable compression algorithms, such as SPIHT [5]
and EBCOT [7], can reconstruct a coded signal to certain
fidelity from any prefix of the code stream. This feature
can be exploited by Reed-Solomon (RS) codes to gener-
ate a rate-distortion optimized UEP packetization. Specif-
ically, a collection of (RS) block codes of the same length
but decreasing redundancy are used to protect subsequent
segments of the scalable source code stream, and forms the
packets across the channel codewords. Any set of received
packets can be used to reconstruct the source to some fi-
delity, and the fidelity increases in the number of received
packets. We are interested in the problem of optimal UEP
packetization under the criterion of maximizing the expected
fidelity at the receiver, constrained by a given transmission
budget.

Let N be the number of packets to be transmitted, and L
the number of symbols in each packet (a symbol is a block

of a fixed number of bits, usually 8 bits). In general, only
a prefix of the scalable source sequence is packetized. This
prefix of the source code stream is partitioned into L con-
secutive segments, and each of these segments is protected
by RS code. Let mi be the length (in symbols) of the i-
th source segment, then the channel code assigned to pro-
tect it, is the (N, mi) RS code. The stream of these mi

source symbols followed by the fi = N − mi redundancy
symbols constitutes the i-th slice of the joint source-channel
code. The packets are formed across the slices, i.e., the n-
th packet contains the n-th symbol of each slice. The ef-
fect of the (N, mi) RS code applied to the i-th source seg-
ment is that, if at most fi of N packets are lost, then all the
mi source symbols of the i-th slice can be correctly recov-
ered. However, since the scalable source sequence is only
sequentially refinable, the i-th source segment can be de-
coded only if the previous i−1 segments are available. This
requires that the number of redundancy symbols assigned
to a slice be monotonically non-increasing in the slice in-
dex: f1 ≥ f2 ≥ · · · ≥ fL, or equivalently, the number
of source symbols allocated to each slice be monotonically
non-decreasing in the slice index:

m1 ≤ m2 ≤ · · · ≤ mL, (1)

Let m = (m1, m2, · · · , mL) be the vector whose com-
ponents are the number of source symbols allocated to the
slices. We call m the L-slice source allocation vector. Fig-
ure 1 illustrates the UEP packetization scheme.

Let φ(r) be the rate-fidelity function of the scalable source
sequence, which is a monotonically non-decreasing func-
tion in rate r ∈ [0, Rmax], where r denotes the number of
symbols in a prefix of the source sequence, and Rmax is
the total number of source symbols. Let pN (n), for 0 ≤
n ≤ N , denote the probability of losing n packets out of
N . The efficiency of the packetization scheme is measured
by the expected fidelity of the reconstructed sequence at the
decoder side, denoted by Φ(m). This quantity can be ex-
pressed as [3]

Φ(m) = PN (N)φ(0) +
∑L

i=1 PN (fi)(φ(ri) − φ(ri−1)) =

PN (N)φ(0) +
∑L

i=1 PN (N − mi)(φ(ri) − φ(ri−1)), (2)
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Fig. 1. Uni-group UEP packetization scheme. The slices
are positioned horizontally and the packets vertically. The
shaded squares represent the source symbols and the white
squares represent redundancy symbols.

where PN (k) =
∑k

n=0 pN (n), k = 0, 1, · · · , N , and ri =
∑i

k=1 mk, 1 ≤ i ≤ L, r0 = 0.

The objective of optimal UEP packetization under the
rate-fidelity criterion is to find the L-slice source allocation
vector m = (m1, m2, · · · , mL) that maximizes Φ(m), for
given N , L, pN (n), and φ(r). Various algorithms have been
proposed in the literature to find approximate or exact solu-
tions. The approximation algorithms of [3, 4, 6] assume
the convexity of the rate-fidelity function, but cannot guar-
antee the global optimality of the solution even under this
assumption. Among the globally optimal algorithms, the
most efficient are those proposed in [2], namely a O(N2L2)
time complexity algorithm for the most general setting of
the problem, and a O(NL2) running time algorithm for the
case of convex rate-fidelity function and a wide class of era-
sure channels, including channels for which the probability
function of losing n packets is monotonically decreasing in
n and independent erasure channels with packet erasure rate
no larger than N

2(N+1) .

The contribution of this work is a more efficient globally
optimal algorithm for the latter case. The new algorithm is
based on a Lagrangian formulation of the problem. For each
value of the Lagrangian multiplier λ, the algorithm takes
O(NL) time. The number of iterations needed to find the
optimal λ, and hence to complete the algorithm, is much
smaller than L, leading to great savings of computations
from the O(NL2) time algorithm of [2]. The memory usage
also drops from O(NL2) in [2] to O(NL). The saving in
memory partially accounts for the increased speed of the
new algorithm.

2. NEW MODELING OF THE PROBLEM

We assume that the rate-fidelity function is convex (more
precisely, upward convex) and that pN (n) is decreasing in
n (the other case when the channel is an independent packet
erasure channel will be discussed at the end of this section).
It was shown in [2] that in this case optimal UEP packeti-
zation can be computed by maximizing the expression (2)
without imposing the constraint (1). The first step in our
development is to show that maximizing (2) is equivalent
to solving a maximum-weight path problem constrained on
the number of edges.

Consider the weighted directed acyclic graph G = (V, E),
whose nodes are identified with nonnegative integer num-
bers between 0 and M , where M = min(Rmax, NL), i.e.
V = {0, 1, 2, · · · , Rmax}, and any two nodes u, v such that
0 < v − u ≤ N are connected by an edge, hence the set
of edges is E = {(u, v)|0 ≤ u < v ≤ M, v − u ≤ N}.
The weight of an edge (u, v) is defined to be w(u, v) =
PN (N − v + u)(φ(v)− φ(u)). Let the source vertex of the
graph be 0 and let the set of final vertices coincide with V .

A path in the graph is any sequence of nodes such that
any two consecutive nodes are connected by an edge. The
weight of the path is the sum of weights of edges connecting
the consecutive nodes. Note that any L-slice source alloca-
tion vector m, not necessarily satisfying the constraint (1),
can be associated to a path of L edges in the graph G, start-
ing at the source node and ending at a final node, namely
the path: r0, r1, · · · , rL. This correspondence is one to
one. Moreover, the weight of the path equals the value
Φ(m) − PN (N)φ(0). Consequently, maximizing Φ(m) is
equivalent to maximizing the weight of the path. In other
words, the problem of optimal UEP packetization is equiv-
alent to the problem of finding the path of maximum weight
among all the paths from the source to a final node, which
have exactly L edges (the maximum-weight L-edge path
problem). The graph G can be assumed to be complete,
i.e., a graph where each ordered pair (u, v) of vertices with
u < v, forms an edge, by setting to −∞ the weight of pairs
(u, v) /∈ E.

The following result is essential to our development. We
skip its proof due to limited space. The proof follows the
same idea as the proof of Proposition 2 in [2].
Proposition 1. The graph G satisfies the so-called Monge
property, i.e.

w(u1, v1) + w(u2, v2) ≥ w(u1, v2) + w(u2, v1), (3)

for all u1, u2, v1, v2 such that r0 ≤ u1 < u2 < v1 < v2 ≤
M .

The next result states the convexity (more exactly, the
upward convexity) of W̄ (l) as a function of l, where W̄ (l)
denotes the weight of the maximum-weight l-edge path from
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the source to a final node, in G. Its proof is given in Ap-
pendix.
Proposition 2. The inequality

2W̄ (l) ≥ W̄ (l − 1) + W̄ (l + 1) (4)

holds for all l, 1 ≤ l ≤ M .

The maximum-weight L-edge problem, that we need to
solve, is a constrained optimization problem. The constraint
is on the number of edges in the path. The convexity result
proved above implies that the Lagrangian method can be
used to solve this problem exactly.

Let P denote the set of all paths from the source node to
any terminal node, in the graph G. For any path P ∈ P let
W (P ) denote its weight and L(P ) its length (the number of
its edges). Then the problem of maximum-weight L-edge
path in G can be formulated as

maximizeP∈PW (P )
subject to L(P ) = L. (5)

The underlying Lagrangian is J(λ, P ) = W (P ) + λL(P ),
over all paths P ∈ P and all real values λ. For each real
λ, let Pλ denote the path which maximizes J(λ, P ) over all
P ∈ P , i.e.,

Pλ = max
P∈P

J(λ, P ), (6)

The convexity of W̄ (l) implies that there is some real
value λ0 such that L(Pλ0) = L. Then Pλ0 is the solution
of the constrained problem (5). Moreover, W̄ (L − 1) −
W̄ (L) ≤ λ0 ≤ W̄ (L) − W̄ (L + 1) (i.e., −λ0 corresponds
to the slope of the curve W̄ (·) in the point (L, W̄ (L))).
These statements follow either according to the theory of
Lagrangian multipliers or by direct proof in the spirit of [1].

Therefore, the L-edge maximum-weight path can be found
by solving (6) in conjunction with a search on λ until the
number of the edges on the path becomes exactly L. To
this end we derive from G a parameterized graph G(λ) by
adding λ to the weight of each edge of G. In the resulting
parameterized graph G(λ) the maximization problem of (6)
reduces to an unconstrained maximum-weight path prob-
lem. This is because J(λ, P ) equals the weight of the path
P in G(λ).

It is easy to check that, since the graph G satisfies the
Monge property, then G(λ) satisfies the Monge property,
too. Therefore, the maximum-weight paths from the source
to each node can be found in O(| V |) = O(NL) time and
space by using the algorithm proposed in [8]. Further, by
computing the maximum of these paths, in no more than
O(NL) time, the maximum-weight path of the graph is
found. Consequently, for each λ, the maximization of (6)
is solved in O(NL) time and space.

To find the optimal λ0, we use bisection search, since
the length of Pλ is non-decreasing as the parameter λ in-
creases [1]. More exactly, a search interval for λ, [λlow, λhigh]

is maintained at any time. At the beginning λlow = −φ(NL)
L

and λhigh = 0. At the beginning of each iteration, the cur-
rent value of λ is set to (λlow + λhigh)/2. If L(Pλ) =
L the algorithm stops. Otherwise, depending on whether
L(Pλ) < L or L(Pλ) > L, the search interval [λlow, λhigh]
is updated to [λ, λhigh] or [λlow, λ] respectively. This tech-
nique ensures that the search interval for λ becomes smaller
after each iteration. However, since the path lengths L(Pλ)
take values only in a finite set, it follows that the inter-
val [L(Pλlow

), L(Pλhigh
)] (which is guaranteed to include

L) may not change after some iterations. The first time it
happens (but after the endpoints of the interval have both
changed from their initial values), we switch to another strat-
egy for updating λ, namely λ = (λhigh−λlow)/(L(Pλlow

)−
L(Pλhigh

)). If after this switch, the interval of lengths
[L(Pλlow

), L(Pλhigh
)] does not change after some iteration,

then we stop concluding that the current λ is the optimal
one. This situation corresponds to the case when the func-
tion W̄ (l) is linear for l ∈ [L(Pλlow

), L(Pλhigh
)]. The de-

sired L-edge path is constructed then from Pλlow
and Pλhigh

in O(L) time, in a similar way as that described in the proof
of Proposition 2.

If α denotes the number of iterations until the optimal λ
is found, then the optimal UEP packetization can be solved
in O(αNL) time, for channels with decreasing pN (n) and
for convex rate-fidelity curves. We have empirically found
that α increases extremely slow with L, thus supporting our
claim of higher efficiency versus the O(NL2) time algo-
rithm of [2]. The space complexity of the new algorithm is
clearly linear in the transmission budget, i.e. O(NL), be-
cause the current path does not have to be stored from one
iteration to the next.

Assume now that the channel is an independent erasure
channels with packet erasure rate no larger than N

2(N+1) . Let
n0 = �ε(N + 1)�. It was proven in [2] that an optimal
L-slice source allocation vector m exists such that mi ≤
N − n0 for all i. Then the graph G is constructed such
that only edges (u, v) with v − u ≤ N − n0, to have finite
weight (defined as previously), and all the other edges to
have the weight −∞. It was also shown in [2] that pN (n) is
nonincreasing for n ≥ n0, which is the crucial ingredient to
show that the modified graph satisfies the Monge property.
Further, the same development applies as in the previous
case.

3. EXPERIMENTAL RESULTS

We have tested the new algorithm on four images compressed
by SPIHT [5]. The images and their sizes are: barb (576x720),
boat (576x720), lena (512x512) and zelda (512x512). The
fidelity measure used is PSNR. In order to have exact con-
vexity of the rate-fidelity curve, we approximated the real
PSNR curve by its upper convex hull (the same approxima-
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tion was also used by our predecessors [3, 4, 6]).
In order to test the number of iterations α, we consid-

ered different values for L (from 50 to 200, in increments
of 25) and different values of N (from 50 to 200, in in-
crements of 25). In our experiments we simulated packet
erasure channels with exponentially decreasing pN (n) and
different mean packet loss rates: 0.15, 0.2, 0.25, 0.3. The
number of iterations for all our tests ranges between 2 and
14 with an average of 9.61. The extreme values 2 and 14
were statistical outliers. The average number of iterations
exhibits a very slight increase with L: from 8.3 for L = 50,
to 10.5 for L = 200. But for practical considerations, we
can treat α as a constant.

The proposed algorithm is globally optimal for convex
rate-fidelity curves, but for real images it is an approxima-
tion. To assess the quality of this approximation we com-
pared the new algorithm against the globally optimal algo-
rithm of [2]. We performed tests on all four images given
above assuming a packet erasure channel with exponentially
decreasing pN (n) and 0.2 mean packet loss rate. We con-
sidered two values for L: L = 50, 100, and three values for
N : N = 100, 150, 200. The new algorithm achieved solu-
tion within 0.01 dB of the optimal one, in 61.5% of the total
of 24 cases. For the remaining cases the difference in ex-
pected PSNR versus the optimum was uniformly distributed
in the range [0.01, 0.05] dB.

4. CONCLUSION

We have proposed a new efficient algorithm for uneven era-
sure packetization of scalable source code streams. The al-
gorithm finds the globally optimal packetization for scalable
code streams of convex rate-fidelity function and a large
class of erasure channels. The time and space complexities
of the new algorithm are linear in N and in L, represent-
ing a significant improvement over the previous O(NL2)
algorithm. For real SPIHT-compressed images, the new al-
gorithm obtains solutions extremely close to the globally
optimum.

Appendix

Proof of Proposition 2. Note that a similar result was proved in [1]
(Corollary 7) for a complete graph with Monge property, but only
one terminal node. In our graph all nodes are terminal, therefore
the result of [1] is not applicable, but in our proof we will use an
intermediary result of [1] (Lemma 6). Consider the paths P1 and
P2 the (l − 1)-link maximum weight path, and the (l + 1)-link
maximum-weight path. Let P1 be r0, r1, · · · , rl−1, and let P2 be
r0, r

′
1, · · · , r′l+1. The idea of the proof is to construct two l-link

paths Q1 and Q2 such that the following relation to hold:

W (Q1) + W (Q2) ≥ W (P1) + W (P2). (7)

We need to distinguish between three cases.

Case 1: r′l+1 ≤ rl−1. According to Lemma 6 in [1], a path Q1

from the source to rl−1, and a path Q2 from the source node to
r′l+1, each of l edges, can be constructed such that (7) to hold.
Case 2: r′l ≤ rl−1 < r′l+1. Construct the l-edge paths Q1 from r0

to rl−1, and the (l− 1)-edge path Q′
2 from r0 to r′l as in Lemma 6

in [1], such that the sum of the weights of Q1 and Q′
2 is larger or

equal than the weight of P1 plus the weight of the sum of weights
of the first l edges of P2 (i.e. the prefix of P2 up to node r′l). Then
construct Q2 by appending the edge (r′l, r

′
l+1) to Q′

2. Clearly, (7)
is now satisfied.
Case 3: rl−1 < r′l. Let Q2 be the prefix of the path P2 up to the
node r′l. Denote a = rl−1 + r′l+1 − r′l and let Q1 be the path
obtained by appending the edge (rl−1, a) to P1. Then, in order
to prove (7) it is enough to show that w(rl−1, a) ≥ w(r′l, r

′
l+1).

This inequality is equivalent to φ(a)−φ(rl−1) ≥ φ(r′l+1)−φ(r′l),
which follows from the upward convexity of φ.
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