
GPUCV: A FRAMEWORK FOR IMAGE PROCESSING ACCELERATION
WITH GRAPHICS PROCESSORS

Jean-Philippe Farrugia(+)(*), Patrick Horain(+), Erwan Guehenneux(+), Yannick Alusse(+)

(+) GET/INT, Département EPH, 9 avenue Charles Fourier, 91011 Evry Cedex, France

(*) LIRIS, Université Lyon 1, 42 boulevard du 11 novembre, 69622 Villeurbanne Cedex, France

jean-philippe.farrugia@iuta.univ-lyon1.fr, Patrick.Horain@int-evry.fr

ABSTRACT

This paper presents a state of the art report on using graphics
hardware for image processing and computer vision. Then
we describe GPUCV, an open library for easily developing
GPU accelerated image processing and analysis operators and
applications.

1. INTRODUCTION

Nowadays, graphics processing units (GPU) have made their
way to home computers through video games and multime-
dia. Since these highly specialized processors offer high com-
puting power, it is interesting to use this readily available re-
source for general purpose computing, especially for image
processing and analysis.

In this paper, we show that, while porting to GPU algo-
rithms that process all pixels independently is be fairly straight-
forward, global image computation can still be achieved with
some ad hoc implementation. We also propose a simple frame-
work to harness the GPU power while minimizing develop-
ment effort.

In the next section, we introduce GPU programming ba-
sics. Then we review previous work in this field, and we
present our contribution in the fourth and fifth section. The
sixth section discusses integration issues presents an Open
CV port with our library. The final section discusses perspec-
tives.

2. IMAGE PROCESSING AND COMPUTER VISION
ON GPU : BASICS

2.1. Computing with GPUs

The purpose of modern graphics processors is to generate
high quality images from three-dimensional models. Their
processing pipeline consists of the following steps :

• world to screen projection;

• lighting computation;

• primitives assembly;

• rasterization: transforming geometric data into image
fragments;

• colour computing: fragments are turned into pixel val-
ues.

GPUs host all these computations in a single chip and
leave the central processing unit (CPU) available for other
tasks. They offer great abilities for algebraic operations and
native handling of floating point numbers, vectors and ma-
trices. Their host graphics cards hold dedicated fast access
memory for storing texture and data. General purpose com-
puting with GPU is possible at the cost of reformulating com-
mon algorithms to fit the processing pipeline, which may or
may not be easy. In 2002, the third generation of GPUs intro-
duced programmable pipelines, so turning GPUs into stream
processors.

2.2. GPU programming

Two steps in the processing pipeline are programable:

• the world to screen projection and lighting computa-
tion, which are handled by the vertex processor or ver-
tex shader;

• the colour computation, which is handled by the frag-
ment processor or fragment shader.

Both shaders have limitations.

• They can only access and modify their own data and
have a fixed format output.

• Parameters are passed to shaders in read-only mode.

• Their number of assembly instruction is limited to 1024
or 65536;

5851424403677/06/$20.00 ©2006 IEEE ICME 2006

Common high level languages for GPU programming in-
clude Cg (C for Graphics, nVidia) [1], GLSL (Open GL Shad-
ing Language, 3dLabs) [2] and HLSL (High Level Shading
Language, Microsoft and nVidia) [3]. While these languages
impose to compile and link separately the shader and CPU
programs, the metaprogramming approach used by Sh [4] and
Brook GPU [5] allows to hide the difference between CPU
and GPU. Although, these languages are not image special-
ized and remain hard to use for image processing and com-
puter vision scientists.

3. PREVIOUS WORK

Since high level languages are available for GPU program-
ming, algorithm transposition became less difficult. The graph-
ics processor may be viewed as a "SIMD" (single instruction,
multiple data) stream processor, where the fragment proces-
sor is the kernel computation applied to all the data. This
allows to easily transpose parallel algorithms. In this section,
we shall describe previous work based on this approach.

The OpenVidia library [6] developed by Fung et al. offers
a collection of fragment shaders dedicated to computer vision
and image processing and a framework to easily apply them
on an image or a video.

In [7], Moreland and Angel used a fragment shader to
compute a fast Fourier transform on GPU. Here, the main dif-
ficulty is to implement the transform as several steps where
pixel are processed independently. The fast Fourier transform
on GPU is four times faster than on CPU.

Strzodka and Telea presented a generalized bi-dimensional
distance transform in [8]: each pixel received, in addition of
its distance, a label corresponding to the closest object to this
pixel. This labelling is obtained via a fragment shader which
alters the depth buffer. An adaptive version is also presented.
Performances are impressive and this method is up to 34 times
depending on the complexity of the image.

Strzodka and Galbe [9] introduced a motion estimation
method based on eigen vectors analysis in a spatio-temporal
tensor. The sequence is transmitted frame by frame in video
memory and eigen vectors, tensor and visualization are com-
puted with fragment shaders. This speeds up the process up
to 2.8 times with reference to a Pentium 4 processor.

4. A GLOBAL APPROACH OF GPUS

Fragment shaders may speed up image processing and com-
puter vision algorithms but they are subject to a serious lim-
itation: algorithms that can be implemented must be parallel
at the pixel level. It is not possible to access the value of
nearby pixels that have just been computed for neighborhood
recursive processing.

Therefore, some image processing operations require fur-
ther GPU resources. Approaches to GPU processing purely

based on Opengl rather than fragment shaders have been pro-
posed by Cabral et al. [10] for tomographic reconstruction,
Rumpf and Strzodka for image segmentation [11] and non lin-
ear diffusion filtering [12]. Hybrid methods, mixing fragment
shaders with geometry methods were proposed by Kelly and
Kokaram [13] for motion estimation and Hoff [14] for dis-
tance transform. The methods used in these works may not
be reproduced with the fragment shader kernel / pixel flow
method. Therefore we think there is a need for a global li-
brary in which these algorithms may be implemented.

5. A NEW PROGRAMMING INTERFACE FOR
IMAGE PROCESSING WITH GPU

We developed GPUCV, an open library 1 meant for easy de-
velopment of GPU accelerated image processing and com-
puter vision applications.

First, it allows easy shaders handling. A "Filter Manager"
class provides for shaders creation and application on images.
Since OpenGL and the GLSL shading language are used for
shaders, any system supporting OpenGL 2.0 will support our
interface. It supports not only the fragment shader kernel
scheme, but also using vertex shaders, which are rarely used
for image processing and vision algorithms on GPU (unlike
the fragment shaders, they allow to modify the coordinates
transmitted through the graphics pipeline). Shaders can be
dynamically generated as meta-shaders which allows flexibil-
ity in setting up possibly many parameters. Last, our pro-
gramming interface proposes to use any geometry for shader
computing to allow geometric methods. Other libraries gener-
ally impose a screen aligned quad mapped with the processed
image. All these characteristics are unique to our library and
cannot be exploited with OpenVidia.

Second, GPUCV is an extension of Intel’s Open CV [15]
library that is fairly popular for developing interactive com-
puter vision applications. It is meant to support GPU accel-
eration for applications written with Open CV without mod-
ifying the application source code. The current version of
GPUCV includes colour conversion, histogram and morpho-
logical operations. In this section, we detail the methods
and difficulties of porting operators and present some results.
Since image processing nor computer vision scientist are usu-
ally not familiar with (painful) graphics programming and
hacking, this is an advantage on GPGPU languages like Sh
or Brook GPU.

5.1. Issues for GPU integration into Open CV

We designed an interface meant to hide complexity of han-
dling fragment and vertex shaders. GPUCV operators share
Open CV data structure, have similar interface with their Open
CV counterpart and can seamlessly be mixed with native Open
CV operators.

1Available for download from http://picolibre.int-evry.fr/projects/gpucv.

586

This raises some difficulties that are discussed hereafter.
First, shaders can only process images in video memory while
Open CV’s IplImage are stored in central memory, so we need
an transparent and efficient transfer mechanism. Second, a
GPU version of an Open CV operator may not be faster than
the original CPU version, so heuristics for smart switching
between the Open CV and GPU versions. Finally, OpenGL
should not be visible to the user.

5.1.1. Image handling

Transferring data between the video and central memories
takes a lot of time, so we need efficient image synchroniza-
tion. The image object manager is our interface between Open
CV’s IplImage structure in central memory and OpenGL tex-
tures in video memory. It holds a flag that controls whether
result image data should be left in video memory or pulled
back in central memory, which is the default behaviour for
compatibility with native Open CV operators.

5.1.2. Switching mechanism

An Open CV operator may need more than one shader to be
ported. For example, depending on the parameters, a shader
may be more adapted than another. The Open CV version
may even be faster than the GPU one, so we need a switch-
ing mechanism to choose the best option depending on the
parameters values.

5.1.3. GL layer hiding

GPUCV initialization allows to choose between automatic or
manual OpenGL configuration. The user may create and use
his own OpenGL context, or let the library do it for him.

5.2. Results

5.2.1. Brute force tests

We compared the execution time of native Open CV oper-
ators with their GPUCV counterpart. GPUCV is up to 18
times faster than native Open CV, as shown in table 1. The-
ses tests were realized on a computer with a Pentium 4 CPU,
1 Gigabyte of RAM and a GeForce 7800 GTX GPU. Full
benchmarks with various GPUs and image sizes can be found
on the GPUCV web site.

5.2.2. Histogram computing

As a further example of what our library can do, we pro-
pose a novel method to compute histograms on GPU with
vertex shaders. Our idea is to associate vertice with pixels
and to move them to some position depending on their asso-
ciated pixel value and then to count those vertices in the frame
buffer, which can be done with 16 bits floating point blend-
ing available with new graphic cards. The process consists in

Open CV GPU
3x3 erosion 24 ms 3.0 ms
5x5 erosion 31 ms 8.5 ms

RGB to XYZ 11 ms 0.6 ms
RGB to HSV 18 ms 1.7 ms

Binary threshold 1.2 ms 0.7 ms

Table 1. Example performance comparison between native
Open CV and GPUCV for a 1024x1024 image.

two steps: the first one classifies vertice associated to pixels
relatively to their value, so creating columns of vertice with
the same luminance, and the second pass sums the columns to
compute the histogram. For a histogram with N classes, the
result is a line of N pixels in the framebuffer, where the value
of the ith pixel equals the number of pixels in class i of the
source image. Computing the histogram of a 512x512 image
with this technique requires approximately 5 milliseconds on
a Geforce 7800 GTX GPU, which is 4 times faster than the
state of the art method using occlusion query with fragment
shaders. In spite this remains much slower than optimized
software on CPU such as the 10 times faster Intel’s Open CV
library [15], this may still be valuable if histogram computing
occurs inside a pipeline of GPU operations because this saves
data transfer between the video and central memories. This
method may not be adapted with other libraries like Open
Vidia.

5.2.3. Hough transform

We ported the "HoughLines" OpenCV operator, intended to
detect lines in a binary image. The principle is to sample the
parameter space in a fragment program to find lines in a tex-
ture: for each point in the parameter space, the shader sam-
ples several pixels on the corresponding line in image space
and counts those whose color is not null. The final color, for
each point in the parameter space, is this count. We then find
peaks in this image by thresholding it.

Similarly to generalized hough transform by [16], this
method could be extended to detect any pattern by adding
a certain number of rendering passes, one for each different
pose of the pattern to detect. It is achievable with a single
fragment shader, but we chose to speedup computing by de-
porting some trigonometric computations on the vertex shader,
which is only possible with our system. At this time, this gpu-
based hough transform is not really faster than the CPU one
but it has the advantage of not breaking the gpu pipeline by
tranferring image data back to the central memory.

5.2.4. Example application

We have partly ported to GPUCV a motion capture by com-
puter vision application that is based on Open CV [17]. We

587

ported the image processing steps of the matching process
just by replacing the names of the Open CV operators with
their GPUCV equivalent. These very limited modifications
achieved a 1.2 acceleration factor, which is an early result to
be enhanced with further optimizations.

6. CONLUSION AND PERSPECTIVES

In this paper, we showed that commodity GPU can be used for
image processing and analysis. We describe our open source
library GPUCV that offers a powerful framework for integrat-
ing fragment shaders, vertex shaders and OpenGL process-
ing while hiding graphics processing at application level. It
brings GPU acceleration into native CPU Open CV applica-
tions. It is available at
http://picolibre.int-evry.fr/projects/gpucv.

7. REFERENCES

[1] R. Fernando and M.J. Kilgard, Cg, the definitive guide
to programmable real time graphics, Addison-Wesley
professionnal, 2004.

[2] R. Rost, Open GL Shading Language, Addison-Wesley
professionnal, 2004.

[3] Microsoft corporation, “Directx developer center,”
http://msdn.microsoft.com/directx.

[4] M. Mac Cool and S. Du Toit, Metaprogramming GPUs
with Sh, AK Peters, Inc, 2004.

[5] Stanford University Graphics Lab, “Brook gpu,”
http://graphics.stanford.edu/projects/brookgpu/.

[6] James Fung, Steve Mann, and Chris Aimone, “Open-
vidia: Parallel gpu computer vision,” in Proceedings of
the ACM Multimedia 2005, November 2005, pp. 849–
852.

[7] K. Moreland and E. Angel, “The FFT on a GPU,”
in SIGGRAPH/Eurographics Workshop on Graphics
Hardware. 2003, pp. 112–119, Eurographics Associa-
tion.

[8] R. Strzodka and A. Telea, “Generalized Distance Trans-
forms and skeletons in graphics hardware,” in Pro-
ceedings of EG/IEEE TCVG Symposium on Visualiza-
tion (VisSym ’04), 2004, pp. 221–230.

[9] R. Strzodka and C. Garbe, “Real-time motion estima-
tion and visualization on graphics cards,” in Proceed-
ings IEEE Visualization 2004, 2004, pp. 545–552.

[10] B. Cabral, N. Cam, and J. Foran, “Accelerated volume
rendering and tomographic reconstruction using texture
mapping hardware,” in VVS ’94: Proceedings of the

1994 symposium on Volume visualization, New York,
NY, USA, 1994, pp. 91–98, ACM Press.

[11] M. Rumpf and R. Strzodka, “Level set segmentation in
graphics hardware,” in Proc. of IEEE International Con-
ference on Image Processing (ICIP’01), 2001, vol. 3, pp.
1103–1106.

[12] M. Rumpf and R. Strzodka, “Nonlinear diffusion in
graphics hardware,” in Proc. of EG/IEEE TCVG Sym-
posium on Visualization (VisSym ’01), 2001, pp. 75–84.

[13] F. Kelly and A. Kokaram, “Fast image interpolation
for motion estimation using graphics hardware,” in
IS&T SPIE Electronic Imaging - Real-Time Imaging
VIII, 2004.

[14] Kenneth E. Hoff III, John Keyser, Ming Lin, Dinesh
Manocha, and Tim Culver, “Fast computation of gen-
eralized Voronoi diagrams using graphics hardware,” j-
COMP-GRAPHICS, vol. 33, no. Annual Conference Se-
ries, pp. 277–286, 1999.

[15] G. IBradski, A. Kaehler, and Pisarevsky, “Learning-
based computer vision with intel’s open source com-
puter vision library,” Intel Technology Journal, 2005.

[16] R. Strzodka, I. Ihrke, and M. Magnor, “A graphics hard-
ware implementation of the Generalized Hough Trans-
form for fast object recognition, scale, and 3d pose de-
tection,” in Proceedings of IEEE International Con-
ference on Image Analysis and Processing (ICIAP’03),
2003, pp. 188–193.

[17] J. Marques Soares, P. Horain, A. Bideau, and
Manh Hung Nguyen, “Acquisition 3d du geste par vi-
sion monoscopique en temps réel et téléprésence,” in
actes de l’atelier "Acquisition du geste humain par vi-
sion artificielle et applications", Toulouse, 2004.

588

