
LOW LATENCY VIDEO STREAMING OVER PEER-TO-PEER NETWORKS

Eric Setton, Jeonghun Noh and Bernd Girod

Information Systems Laboratory, Department of Electrical Engineering
Stanford University, Stanford, CA 94305-9510, USA

{esetton, jhnoh, bgirod}@stanford.edu

ABSTRACT

We study peer-to-peer multicast streaming, where a source
distributes real-time video to a large population of hosts by
making use of their forwarding capacity rather than rely-
ing on dedicated media servers. We present a distributed
streaming protocol which builds and maintains multiple
multicast trees. The protocol is combined with an adaptive
scheduling algorithm which ensures packets destined to a
large number of peers, or particularly important to decode
the video, are sent in priority. Experiments carried out over
a simulated network of up to 3000 peers illustrate the per-
formance of the protocol. For low latency video streaming,
the prioritization algorithm offers performance gains, espe-
cially for large audiences and low latencies.

1. INTRODUCTION

In live peer-to-peer (P2P) streaming, a video stream is trans-
mitted to a large population of viewers, through the use
of the uplink bandwidth of participating peers. Unlike
server-based streaming systems, where the number of me-
dia servers required to serve an audience grows linearly with
the number of viewers, this approach is self-scaling as the
number of peer “servers” and peer “clients” increases at the
same rate. Therefore, P2P multicast is a compelling way
to lower the cost of large scale streaming or to address the
problem of flash crowds, which can overwhelm a content
delivery network.

To achieve the same success as P2P file transfer net-
works, which represent, today, over 50 % of total Internet
traffic [1], P2P streaming systems should achieve high and
constant video quality, as well as low startup latencies, and
require no dedicated infrastructure. Three factors make this
a difficult task. First, the access bandwidth of the peers is
often insufficient to support high quality video. Second, the
peers may choose to disconnect at any time and make for a
highly unreliable and dynamic network fabric. Third, unlike
in client-server systems, packets often need to be relayed

This work was supported, in part, by a gift from Hewlett-Packard Lab-
oratories, Palo Alto, CA.

along long multi-hop paths, each hop introducing additional
delay, especially when links are congested. This unique set
of challenges explain why early implementations such as
ESM [2] and PPLive [3] fall short of the goals. Although
these implementations constitute very exciting progress and
demonstrate the feasibility of large scale P2P streaming,
they all suffer from long latencies, usually on the order of
minutes, and unstable video quality.

One way of improving the performance of P2P video
streaming systems is to break away from the common prac-
tice which focuses on designing better protocols, while ig-
noring the properties of the transmitted data stream. As an
alternative, adaptive algorithms where the encoding and the
streaming is adapted to the network protocol can and should
be considered. Cross-layer-designed P2P streaming archi-
tectures were presented in [4] where the authors combine
path diversity and multiple description coding, and in our
prior work [5, 6], where video coding and packet scheduling
is adapted to a multicast tree-building protocol. The purpose
of this article is to analyze further the performance of our
P2P protocol and of a streaming algorithm which combines
information about the video content and information about
the underlying multicast trees to prioritize packet transmis-
sions efficiently.

In the next section we describe our distributed P2P pro-
tocol, which builds and maintains multiple multicast trees.
Results collected over a simulated network of up to 3000
peers reflect the scalability of the protocol and the bene-
fits of employing multiple multicast trees. In Section 3, we
explain how to prioritize transmissions by favoring in par-
ticular packets destined to a large number of peers, or par-
ticularly important to decode the video. Finally, we analyze
experimental results which illustrate the benefits of the ap-
proach for low latency streaming.

2. DISTRIBUTED P2P PROTOCOL

The control protocol enables a source to distribute a video
stream to a population of peers via application-layer multi-
cast. It is completely distributed, except for an approximate
list of connected peers stored and updated by the source.

5691424403677/06/$20.00 ©2006 IEEE ICME 2006



The video source and the peers are connected via multi-
ple multicast trees which are constructed dynamically. The
source is the root of all trees and the trees are built and main-
tained mostly independently. The video stream is transmit-
ted along the different multicast trees in round-robin fash-
ion. Hence, peers need to join each of the multicast trees to
decode and play out the video successfully. If a peer leaves
the session, the multicast trees are dynamically reorganized
as affected peers attempt to reconnect by establishing links
to other parents.

2.1. Joining

When a peer wishes to join the multicast, it contacts the
source and obtains a partial list of peers participating in the
streaming session. Connections to the different multicast
trees are established by determining which of these peers
has enough bandwidth to support an additional child. When
there are several parent candidates, the one closest to the
source is chosen to minimize the height of the trees being
built. Ties are broken by choosing, when possible, different
parents for different multicast trees. This increases the di-
versity and improves the retransmission algorithm outlined
in the following. In this paper, we ignore any Network Ad-
dress Translator or firewall issue which may limit connec-
tivity. Although these problems need to be addressed for
a real Internet implementation (see e.g. [2]), they are not
directly relevant to the scope of this paper and efficient so-
lutions have been proposed [7].

2.2. Node disconnection

When a host leaves, it stops forwarding video packets and
is unresponsive to probing. Peers detect disconnections by
monitoring the state of their parents, and attempt to rejoin
when they detect traffic interruptions. A peer will first try
to rejoin the tree it has been disconnected from through one
of its other parents. If this fast recovery mechanism fails,
the peer will then contact the source to get a new list of
connected peers, and follow the join procedure.

While the peer reconnects, retransmission requests are
issued over the other multicast trees to recover missing
video packets. This approach is different from forward er-
ror correction (FEC) which introduces redundancy in the
stream and does not require the use of a feedback chan-
nel. Unlike FEC, adaptive retransmission requests can be
implemented without any assumption on the error rate of
the channel. Moreover, temporally correlated loss patterns
which characterize peer disconnections would cause FEC
to fail or require large overhead and a waste of network
bandwidth. In [5] and [6], we explain how retransmission
requests can efficiently be managed by a low complexity
algorithm which reduces the additional strain on the other

multicast trees, by requesting in priority the most important
packets in terms of video quality.

2.3. Simulation setup

We evaluate the performance of the protocol over a network
simulated in ns-2 [8]. The backbone links are sufficiently
provisioned so that congestion only occurs on the access
links. The latency of each link is 5 ms, and the diameter of
the network is 10 hops. Losses are only due to congestion
and queue overflow, and transmission errors due to the pres-
ence of ISP boundaries or potential wireless last-hop links
are ignored. The number of peers participating in the multi-
cast varies between 10 and 3000.

The bandwidth of the peers reflects today’s popular net-
work access technology. The bandwidth distribution is
given in Tab. 1. and is similar to the findings reported in [9].
In the experiments, peers join and disconnect from the mul-
ticast session randomly. The average time for which peers
tune in to the multicast is around 5 minutes.

Downlink Uplink Percentage

512 kbps 256 kbps 56%
3 Mbps 384 kbps 21%

1.5 Mbps 896 kbps 9%
20 Mbps 2 Mbps 3%
20 Mbps 5 Mbps 11%

Table 1. Distribution of peer bandwidth.

The video stream produced by the source is encoded
with H.264 [10] at a constant quality; the encoding rate is
approximately 250 kbps. Each video frame is packetized
into UDP packets. Frames exceeding the maximum trans-
mission unit size are fragmented before packetization.

2.4. Performance of the protocol

Figure 1 illustrates the performance of the protocol in terms
of scalability. As expected, the total amount of control and
video traffic, given on the left vertical axis of the figure,
increases linearly with the number of peers. However, the
percentage of traffic due to control, indicated with a solid
line and measured on the right vertical axis of the figure,
remains constant, and only represents 2% of the total traffic.
This demonstrates the scalability of the protocol within the
limits of this experimental setup.

The results shown in Fig. 2 illustrate the benefits of
using multiple multicast trees. As the number of trees in-
creases, the rate of the video sub-streams forwarded along
each tree decreases linearly. Hence, the amount of free up-
link bandwidth required to support an additional child on
any particular tree is smaller; this finer granularity leads

570



10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

T
ra

ffi
c 

(G
b/

s)

Number of peers
10

1
10

2
10

3
0%

2%

4%

6%

8%

10%

P
er

ce
nt

ag
e 

of
 c

on
tr

ol
 o

ve
rh

ea
d

Video
Control

Fig. 1. Aggregate traffic and control overhead for different
numbers of peers and 4 multicast trees.

1 2 3 4 5 6 7 8

32

34

36

38

40

Number of trees

P
S

N
R

 (
dB

)

1 2 3 4 5 6
0%

5%

10%

15%

P
er

ce
nt

ag
e 

of
 c

on
tr

ol
 o

ve
rh

ea
d

Overhead

No retransmission
With retransmissions

Fig. 2. Average video quality and control overhead for 300
peers and varying numbers of multicast trees.

to better use of the available network bandwidth. This ex-
plains why the network cannot achieve good performance
with only 1 multicast tree. In this case, more than half of
the peers are free-riders, as their throughput does not allow
them to forward the video stream. For 2 or more trees, finer
granularity leads to additional available uplink resources.
In particular, there are no more free riders and the available
resources are sufficient to sustain high video quality. This
is the prevalent factor in determining a suitable number of
trees. The results in Fig. 2 show that when more multi-
cast trees are used, the control traffic needed to build and
maintain the trees increases, as shown by the dotted line
and measured on the right vertical axis. In addition, the
increased frequency of parent disconnections causes more
losses which results in lower video quality when no retrans-
missions are allowed. A high video quality can, however,
be maintained by using retransmissions.

3. PRIORITIZED TRANSMISSION

Relaying traffic over the uplink of the peers may lead to con-
gestion on the multi-hop path separating the source from
any particular peer. In particular, because the rate of a
video stream often varies, a peer may sometimes lack the re-
sources to forward all the data expected by its descendants.
Scheduling can help maintain video quality in the instances
when a peer has to drop some packets to ensure timely de-
livery of the more significant portion of the streams. To
our knowledge, although scheduling algorithms for media
streaming have received an increasing amount of attention
(see in particular work based on the seminal article by Chou
and Miao [11]), little or no work has studied this topic in the
context of P2P.

3.1. Congestion-distortion optimized prioritization

In related work [6], we presented a scheduling algorithm
named CoDiO which performs congestion-distortion opti-
mized packet scheduling. CoDiO not only determines in
which order to send packets destined to a particular peer, but
also, how to prioritize among the different descendants of a
peer. This prioritization algorithm bases its decisions on the
“importance” of each enqueued packet. This metric reflects
the distortion reduction associated with decoding a particu-
lar packet, and must be adjusted according to the number of
descendants in the multicast tree that would be affected by
the loss or late arrival of this packet. Hence, the scheduler
adapts its decisions to the video content and to the structure
of the underlying multicast trees.

CoDiO determines which is the next most important
packet by comparing the importance of each enqueued
packet. For a packet number n, addressed to peer m the
importance is expressed:

I(n,m) = D(n) ∗ (NumDescendants(m) + 1) (1)

Fig. 3. GOP encoding structure.

In (1), NumDescendants(m) represents the number of
peers to which packet n will be forwarded after reaching
peer m, this number is collected by the control protocol
when information is exchanged between neighboring peers
to maintain the multicast trees. The quantity D(n) reflects
the sensitivity of the video quality to the reception of the
packet. As the peer does not collect detailed rate-distortion
information about the video stream it is transmitting and as
the exact state of the reception buffer of its descendants

571



0.4 0.6 0.8 1 1.2 1.4 1.6

22

24

26

28

30

32

34

Latency constraint (s)

P
S

N
R

 (
dB

)

Sequential scheduler
CoDiO

0.4 0.6 0.8 1 1.2 1.4 1.6

22

24

26

28

30

32

34

Latency constraint (s)

P
S

N
R

 (
dB

)

Sequential scheduler
CoDiO

Fig. 4. Average video quality for 300 peers (left) and 75 peers (right), as a function of the latency constraint for Foreman

is not known either, this sensitivity needs to be approxi-
mated. We choose to express D(n) as the number of frames
which will be affected if the frame packet n belongs to is
not decoded correctly. Therefore, for the encoding structure
shown in Fig.3, the importance of the different frames is 19,
15, 11 and 7 for the I frame and for the subsequent P frames
and 1 for each B frame.

To mitigate congestion, transmissions are spaced based
on the time needed for the last packet to traverse the uplink,
while reserving a fraction of the link for control traffic.

3.2. Experimental results

To analyze the benefits of adaptive scheduling we compare
CoDiO to a sequential scheduler, in the simulation setup
described in Sec. 2. The sequential scheduler relays the
packets it has received, as long as they are not past due,
without changing their order. Results are collected for dif-
ferent latency constraints1. When the latency constraint is
relaxed, both schedulers have similar performance, as illus-
trated in Fig. 42. In this case, reducing the end-to-end delay
for the more important packets has little influence. When
the latency constraint becomes tighter, CoDiO maintains
high video quality while the performance of the sequen-
tial scheduler degrades. In this experiment, the maximum
tolerable latency is reduced by up to 50%. The range of la-
tencies over which scheduling offers a sizeable performance
improvement depends on the number of peers participating
in the session. For larger audiences, it is essential to priori-
tize packets destined to large population of peers.

4. CONCLUSION

In this paper we analyze the performance of a multicast
streaming protocol which builds and maintains muticast

1The latency constraint denotes the time between the instant a packet is
generated by the source and its playout deadline

2Video quality is measured as the Peak Signal to Noise Ratio (PSNR)
and expressed in decibel

trees to transmit live video to a large population of peers.
Experiments carried out over a simulated network of up to
3000 peers show the scalability of the protocol and illus-
trate the benefits of using multiple multicast trees. We also
describe an adaptive scheduling algorithm which improves
the performance of low latency P2P video streaming, by fa-
voring, in particular, critical video frames and peers with a
large set of descendants.

5. REFERENCES

[1] “Global traffic levels,” http://www.cachelogic.com/re-
search/2005 slide12.php, seen on Apr. 18 2006.

[2] Y. Chu, A. Ganjam, T. Ng., S. Rao, K. Sripanidkulchai, J. Zhan,
and H. Zhang, “Early experience with an internet broadcast system
based on overlay multicast,” USENIX Annual Technical Conference,
Boston, MA, pp. 1283–1292, June 2004.

[3] “PPLive,” http://www.PPLive.com, seen on Aug. 28 2005.

[4] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Dis-
tributing streaming media content using cooperative networking,”
Proceedings NOSSDAV’02, Miami, USA, May 2002.

[5] E. Setton, J. Noh, and B. Girod, “Rate-Distortion optimized video
peer-to-peer multicast streaming,” Workshop on Advances in Peer-
to-Peer Multimedia Streaming at ACM Multimedia, pp. 39–48, nov
2005.

[6] E. Setton, J. Noh, and B. Girod, “Congestion-distortion optimized
peer-to-peer video streaming,” Internet conference on image pro-
cessing (ICIP), to appear, 2006.

[7] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communication
across network address translators,” Proceeding USENIX, Anaheim,
USA, Apr. 2005.

[8] “The Network Simulator - ns-2,” www.isi.edu/nsnam/ns/, seen on
Aug. 28 2005.

[9] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The fea-
sibility of supporting largescale live streaming applications with dy-
namic application endpoints,” Proceedings SIGCOMM’04, Portland,
USA, Aug. 2004.

[10] ITU-T and ISO/IEC JTC 1, Advanced Video Coding for Generic Au-
diovisual services, ITU-T Recommendation H.264 - ISO/IEC 14496-
10(AVC), 2003.

[11] P. Chou and Z. Miao, “Rate-distortion optimized streaming of pack-
etized media,” Microsoft Research Technical Report MSR-TR-2001-
35, Feb. 2001.

572


