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Abstract — Providing video-on-demand streaming service to a 

large population of clients using peer-to-peer approach is drawing 
great interest recently. Since clients’ demands are asynchronous 
and the buffered contents are continuously changing, how to find 
partners with expected data and collaborate with each other for 
future content delivery are very important and challenging. In this 
paper, we propose a generic buffer-assisted search (BAS) scheme to 
improve partner search efficiency. Extensive simulation results 

demonstrate that BAS can provide faster response time with less 
control cost than the existing search methods. 

I. Introduction 

With the widespread deployment of broadband access, Video-on-
Demand (VoD) streaming on the Internet has received increasing 

attention recently. In VoD streaming service, video can be delivered 
to asynchronous users with low delay and VCR-like operation 
support (e.g., pause, fast-forward, and rewind). However, streaming 
to a large population of clients is very challenge due to the limited 
server capacity and little deployment of IP multicast [5]. Peer-to-
peer (P2P) technology is considered to be one of the promising 
solutions for the streaming service [1]. However, applying these 
techniques into VoD streaming is not a trivial task due to the 

following fundamental differences between the two types of 
streaming [2, 3, 6]. 

In a typical P2P-based VoD system, cooperative peers 1  are 
organized into an overlay network via unicast tunnels. The 

streaming content is split into a sequence of segments, each of 
which is a small playable unit, and the server distributes these 
segments among clients of asynchronous demands. Each client 
caches a few segments around its play offset. The client exchanges 
the available segments with the partners, who have close play 
offset and thus the client can fetch the expected data from its 
partners with high probability. Therefore, partner search is one of 
the main components in the P2P-based VoD system. For the users 
in the VoD system, when joining or taking VCR operations, it 

needs to search for the partners. Since different users’ demands 
may be asynchronous, and the contents buffered in one peer are 
continuously changing, an additional index structure is needed for 
the partner search upon peer joins or VCR operations. In general, 
we can assume the playing speed is identical for all the peers, so 
their partner relationship will not change unless they leave, fail, or 
take VCR-jump. It is noticed that there are two overlay networks in 
the VoD system: the index overlay for partner search and the data 

overlay for media transmission. 

It is very challenging to develop an efficient partner search 
structure for a large P2P-based VoD system. Due to scalability 
concerns, the search structures should be distributed ones with sub-

linear search time efficiency. Some distributed structures have been 
proposed with logarithmic search efficiency, e.g., AVL tree [8] and 
skip-list [7]. In those structures, all peers are sorted by the play 
offset and maintained in the index overlay. However, indexing all 
the peers incurs non-trivial maintenance overhead, especially 
considering the insertion, deletion, and rebalancing cost, since 

1 User, client, peer and node are used interchangeably in this paper. 

VCR operations are frequent and the nodes join or leave at will in 
the dynamic P2P-based VoD systems.  

In this paper, we propose a novel Buffer Assisted Search (BAS) 

structure to address the above challenges. It can be observed that 
there is buffer overlapping among different nodes, and removing 
the nodes whose buffer range is fully covered by other nodes does 
not reduce the total buffer coverage of the search structure. 
Therefore, we introduce BAS structure to exploit this buffer 
coverage redundancy to reduce the size of search structure. By 
indexing a small subset of peers, BAS provides constant search 
time efficiency and low control overhead. In addition, the BAS 

structure is generic and can be implemented based on existing data 
structures, e.g., AVL-tree and skip-list.  

The rest of the paper is organized as follows. The background and 
motivation is reviewed in Section II. Section III presents the BAS 

structure. Simulation results are given in Section IV, followed by 
the conclusions in Section V. 

II. Background and Motivation 

In this section, we briefly review the related works on partner 
search in VoD service and present one concrete example that 

motivates our study.  

Developing the efficient search schemes for P2P-based VoD 
service has been a very active research. CollectCast [4] and 
oStream [1] record the play progress of all the nodes in the 

centralized server. Though it is simple and easy to manage, the 
server is easily overloaded in the presence of frequent peer join, 
leave, and VCR operations. P2Cast [3], P2VoD [2], TAG [8], and 
DSL [7] logically organize all peers into linear, tree, or skip-list 
structures. Given the play offset as a key, these methods support 
random search and VCR operation in a distributed manner. Each 
peer maintains constant or logarithmic number of index neighbors 
and the search is performed by tracing the peers hop by hop 

according to the neighbor information. Although some of them 
provide sub-linear search efficiency, the maintenance cost is not 
trivial since all peers need to be indexed in the structure. The 
frequent VCR operations and dynamic P2P environment further 
aggravate this maintenance overhead. 

Recent studies show that it is not necessary to index all peers 

because finding a small number of partners is sufficient for the 
media streaming [2, 3, 7, 8]. Therefore, it is possible to prune the 
indexing structure without scarifying the search performance. We 
propose BAS scheme to exploit the client buffer coverage in order 
to keep the indexing structure within a small scale. In the VoD 
system, each peer has a buffer to maintain contents around its play 

offset and acts as a potential partner for the peers whose play offset 
lies within its buffer range. If a peer, whose buffer range is fully 
covered by other peers, has been removed from the indexing 
structure, the other peers who use this removed peer as a partner 
can still find other possible partners instead. Thus, in the BAS 
structure, those nodes with redundant buffer coverage can be safely 
removed from the indexing structure. Fig 1 shows an illustration 
example for the effectiveness of BAS scheme, where AVL tree is 
used as the basic structure. In this example, seven peers join the 

system in the sequence from P1 to P7. Fig 1(a) and Fig 1(b) show 
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the AVL tree and BAS structure respectively after seven peers 
joined.  As shown in Fig 1(a), P1 is covered by P3 and P4, P2 is 
within P5, P3 is covered by P5 and P6, and P4 is covered by P6
and P7. Assume that each new peer examines the buffer overlap of 
the existing peers in the BAS structure, and then P1, P2, P3, and 

P4 can be removed upon the arrival of P4, P5, P6, and P7
accordingly. Thus in Fig 1(b), only P5, P6 and P7 are indexed 
while the total buffer coverage is not affected. We will present how 
to minimize the number of index peers while ensuring the search 
effectiveness in detail in Section III. 

Fig 1. The effectiveness of BAS on an AVL tree 

III. Buffer-Assisted Search Overlay 

The objective of BAS is to maintain as few index peers as possible 
for better search efficiency. In other words, we want to minimize 

the search overlay size without affecting the search effectiveness. 
We first formulate this as the Minimum Buffer Cover (MBC) 
problem and present a globally optimal solution. Concerning the 
system scalability, we then design a distributed algorithm and show 
how to apply it in the overlay construction, maintenance, and VCR 
operations accordingly. 

A. Minimum Buffer Cover Problem and Optimal Solution 

Each peer has a buffer range around its play offset and may overlap 

with other peers in buffer coverage. By observing there is buffer 
coverage redundancy, BAS aims to select as few index peers as 
possible without reducing search effectiveness, i.e., total buffer 
coverage. It is formulated as the minimum buffer cover (MBC) 

problem as follows. We consider a collection C of buffers totally 
covering an integer range R [1, 2, …, M]2, and every buffer is a 

consecutive subrange of R. A buffer cover for R is a subset C’ ⊆ C

such that every element in R belongs to at least one member of C’.
The goal is to find the buffer cover C’ with minimal cardinality |C’|. 

We design a dynamic programming algorithm to compute the 

optimal solution. Let A(0) =  and A(k) be the MBC to cover Rk [1, 

2, ..., k] for k ≥ 1. Obviously, |A(i)| ≤ |A(j)| for i ≤ j. We denote the 

set of buffers covering number k as Yk, the smallest number in the 
buffers of Yk as mk and the corresponding buffer containing mk as 

χk∈Yk. If there are more than one buffers containing mk, choose the 

one with longest length. 

Theorem 1: If k ≥ 1, A(mk-1)∪{χ k} is also the MBC for Rk.

Proof: In any buffer cover A’ for Rk, there is at least one buffer 

χ’∈(Yk A’). Assume the smallest number in χ’ is m’, then the set 

A’-{χ’} at least covers Rm’-1 [1,2,…,m’-1], thus  

|A’-{χ’}|≥|A(m’-1)|, i.e., |A’|≥|A(m’-1)|+1. 

Recall that mk ≤ m’, we have 

|A’|≥|A(m’-1)|+1≥|A(mk-1)|+1=|A(mk-1)∪{χk}|. 

2 If the covering area consists of several discontinuous ranges, the 
problem can be deduced into some sub-problems, each for a range 
and the corresponding buffers.  

Thus, |A(k)|≥ |A(mk-1)∪{χk}|. From the optimality of A(k) for Rk,

|A(k)|≤|A(mk-1)∪{χk}|. So A(k) and A(mk-1)∪{χk} must have the 

same cardinality, and A(mk-1)∪{χk} is also a minimum buffer 

cover for Rk.                                                                                    

Theorem 1 indicates the recurrence in the dynamic programming 

solution is given by: 
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Note that A(M) is the optimal solution to MBC problem. There is a 
trick in computing A(M). Instead of computing all A(i)’s for i<M,
we only need to trace from A(M) to A(0). Since each step requires 
O(|C|) comparison time for mk and the number of steps is O(|C’|), 
the total running time is O(|C|2). If the average buffer length of the 
peers is much smaller than |C| (constant relative to |C|), we can 
further reduce the running time by pre-assigning the buffers to their 
containing numbers using O(|C|) time. Thus upon computing A(k),

only the buffers containing k are compared. Since each buffer is 
compared only once, the running time is O(|C|). Thus, the total 
running time can be reduced to O(|C|). The latter solution is 
described in Fig 2. 

1: for i = 1 to M  { Yi = , A(i) = ; } 

2: for each buffer χ∈C

3:       for each i∈χ
4:           Yi = Yi ∪ {χ}; 

5: j= M;
6: while (j>0) { 

7:       χ = argminχ{the smallest number sχ in χ, χ∈Yj }; 

8:       A(M) = A(M) ∪{χ}; j = sχ-1;   } 

Fig 2. The globally optimal Dynamic Programming algorithm 

Although this algorithm is efficient and provides optimal solution, 
it requires global information of all peers’ buffer. This is not 
practical in a large and distributed system. We propose a distributed 

algorithm which makes decision only based on local information in 
the next subsection.  

B. Distributed Algorithm 

The large and distributed systems require a distributed algorithm 

that adjusts the index overlay based on local information. Since the 
peers come asynchronously and not all the peers are maintained in 
the index overlay, we design a distributed algorithm to calculate the 
optimal solution only based on the existing index peers plus the 
new comer, upon each new peer insertion. Note that, at any time, 
every index peer contains at least one unique number, which is not 
covered by other index peers, or else it will be removed from the 
index overlay. 

The basic flow of our distributed algorithm is to divide the existing 
index peers into two groups according to whether they overlap with 
the new comer, and then apply the dynamic programming 
algorithm to the new comer plus the group overlapping with the 

new comer. We denote the collection of buffers of existing index 

peers by C’ and the newly added buffer by β. Let LAP = {α| α∈C’

and α β  } and UNLAP = C’-LAP. Assume UNLAP covers 

[1,…, i] and [j,…, M]. Let LAP’ = {α {i+1,.., j-1}| α∈ LAP} and 

record the mapping between LAP and LAP’. Let D = {β}∪LAP’.

The dynamic programming algorithm is to compute the optimal 

solution D’ for D. Restore the buffers in D’ according to the 

mapping between LAP and LAP’. Let C” = D’∪UNLAP and it is 

the optimal solution for {β}∪C’. The complexity of the distributed 

algorithm is determined by the dynamic programming algorithm, 
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which is O(|D|) = O(|LAP|), i.e. the number of existing index peers 
overlapping with the new peer, instead of the system size. 

Theorem 2: C” is the optimal solution for {β}∪C’.

Proof: Before β’s arrival, each buffer α in C’ contains at least one 

unique number, which is not covered by other buffers in C’. Since 

the new buffer β does not affect the unique numbers of the non-

overlap buffers, they must remain in the optimal set. Note that
UNLAP covers [1,…, i] and [j,…, M], and the uncovered area left 
becomes [i+1,…, j-1]. LAP is adjusted as LAP’ to compute the 
minimum buffer cover D’ for [i+1,…, j-1]. Thus, the union of D’

and UNLAP is the minimum buffer cover for {β}∪C’.     

As more peers join the system, the same operation is applied to C”

to get C3, and then C4, C5…. Similarly, Ck+1 is the optimal solution 

for {β}∪Ck. Since the complexity of the distributed algorithm is 

determined by |LAP| and Ck is the corresponding index overlay, we 
will study the magnitude of |LAP| and compare Ck with the globally 
optimal solution as follows. 

Let N = |Ck| and the buffers in Ck, denoted as X1, X2, …, XN, be 

ordered by their minimum numbers. li and ri are used to represent 
the minimum and maximum number of Xi. Bi denotes the length of 
Xi, and the average length of all buffers is B.

Lemma 3: ri<rj for i<j. 

Proof: From the definition, we have li< lj for i<j. If ri>rj, then Xj

can be fully covered by Xi, which contradicts the assumption.       

Lemma 4: li+2 - li > Bi.

Proof: Assume li+2 - li ≤ Bi, i.e., li+2 ≤ Bi+ li= ri. Thus, the range 
from li to ri+2 is fully covered. According to the definition and 

lemma 1, we get li< li+1 and ri+1< ri+2, i.e., Xi+1 is fully covered by 
Xi and Xi+2, contradicting the assumption. Thus,  li+2 - li > Bi.         

Theorem 5: N ≤ 2M/B.
Proof: Assume N is an odd integer.  

M ≥ BN + lN – l1 = BN + )(
2/)1(

1 1212

−

= −+ −N

i ii ll > BN
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−
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From (1) and (2), we get 
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i.e., N < 2M/B. The proof is similar when N is an even integer.     

Theorem 6: The expected size of LAP is a constant. 

Proof: The overlapped buffers can be categorized into two types: 
the ones left the index overlay and the ones remained after 

inserting the new buffer β. From Theorem 5, the index size is 

bounded by 2M/B, so β‘s arrival removes at most one buffer in the 

old index list on average. Lemma 4 ensures that any buffer in the 
index list Xi can only overlap with Xi-1 and Xi+1. Thus on average, 
there are at most three overlapped buffers found by the new buffer.                

Thus, the distributed algorithm consumes constant amortized time 
and bounds the index overlay size within O(M/B), where M is the 
media length and B is the average buffer length of the peers. For a 
typical 700MB movie, 15MB buffer ensures the index size is 

within 100, no matter how large the user population is. If every 

buffer is equal in size-B, then 2
/

/2

||

|| =≤
BM

BM

OPT

C
k

, where OPT is 

the globally optimal solution. Our simulation results show that |Ck|
is very close to the optimal size. 

C. Overlay Construction, Maintenance, and VCR Operations 

This subsection presents how the distributed algorithm is 

applicable to the index overlay to improve search efficiency. In this 
paper, we simply reuse the structure implemented using AVL tree 
or skip-list, which can provide sub-linear search efficiency.  

1) Join Operation 

When a new client joins the overlay, it first looks for the closest 
index neighbor in O(logN) hops and selects at most I partners from 
the found peer’s data neighbors, where I is the number of initial 
partners. Then the new comer finds out the index peers with buffer 
overlapping by tracing backward and forward along the closest 
index peer’s predecessor and successor. From theorem 6, the 

expected number of hops to be traced is a constant. At last the 
dynamic programming algorithm is applied to the found peers plus 
the new peer to figure out which peers should be pruned from the 
index overlay. Thus, the expected number of nodes a new client 
should contact is a constant. 

2) Leave Operation and Failure Recovery 

When a peer leaves or fails, its neighborship in the index overlay 
and the data overlay should be adjusted for system resilience. By 
maintaining a smaller index overlay, BAS reduces the control 
overhead due to the adjustment of the index overlay. 

A peer scheduled to leave the system should first notify its 

neighbors, such that they can select new partners and re-connect 
with each other to form new neighboring relations. If the leaving 
peer is in the index overlay, it chooses one or more non-index 
neighbors that cover its unique numbers to join the index overlay. 

The node failure can be easily detected after several rounds of 

failed scheduling or buffer information exchange. If the failed node 
is index peer, the neighbors that detect the failure will find one or 
more non-index neighbors that cover the failed node’s unique 
numbers to join the index overlay. 

Note that the leave or failure operation does not change the index 
overlay’s property: every index peer contains at least one unique
number. Thus the theorems in last subsection still hold. 

3) VCR Operations 

In general, the typical VCR operations, e.g., fast-forward or rewind 
movement, can be implemented with the combination of a leave 
and re-join operation. However, a common VCR operation may 
consist of a series of such jump movement, which is not far away 
from each other, so frequent re-join operations are not efficient. If 

the index structure supports horizontal shortcuts to other index 
peers with logarithmic-increasing distances, the VCR operation can 
jump to the new offset by skipping most unnecessary nodes. The 
skip-list is one of such examples [7]. Compared with searching 
from the root or top layer, following the horizontal shortcuts can 
reduce the search cost significantly. BAS further reduces the 
number of horizontal hops with a smaller index overlay. 

In summary, the BAS scheme applies a distributed pruning 

algorithm to existing mature indexing structures such that the index 
overlay size is bounded within a small and stable scale O(M/B). A 
small structure ensures fast response time and low maintenance 
overhead. 
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IV. Simulation Results  
We evaluate the performance of the proposed VoD system by 

comparing it with some existing systems.  

A. Simulation Configuration 
We use the Sprint ISP topology collected by Rocketfuel engine 

[6] for system setup. It consists of 112 backbone nodes and 242 
access nodes; 5 stub nodes are attached to each access node to 

simulate a LAN. Thus the network size is about 1,500. The default 
bandwidth settings between two backbone nodes, a backbone and 
an access node, two access nodes, two stub nodes within the same 
LAN are 10 Mbps, 5 Mbps, 3Mbps, and 10 Mbps, respectively.  

In our simulation, the server and users are located at randomly 

selected stub nodes. The communication path between any two 
nodes follows the shortest path. The bit rate of the streaming media 
is 500Kbps and its length is 2 hours. The segment unit is 1 second, 
and the default size of the user buffer is 120 segments, i.e., less 
than 2% of the entire stream. There is no user in the system at the 
beginning, and users join the system following a Poisson process 
with mean inter-arrival time of 3 seconds. The start offset of each 

user is evenly distributed between 0 and 2 hours. Users leave when 
they play to the end. For each set of configuration, 10 simulation 
runs have been performed to mitigate the effect of randomness. 

B. Search Efficiency and its Control Overhead 

We first investigate the search performance for the BAS scheme. 

For simplicity, only the BAS using skip-list structure is shown in 
this section. We compare BAS with the DSL [7], which also uses 
skip-list structure. 

Fig. 3 depicts the size of search structure for DSL and BAS during 

a 10,000 sec simulation. L-BAS represents the case where the 
distributed algorithm is used, while G-BAS is the size computed by 
the globally optimal algorithm. Because DSL has to maintain the 
play progress of all online peers, the size of DSL increases as the 
system grows with time until the system size keeps relatively stable 
around 1,400 after 7,000 sec. In contrast, BAS only maintains less 
than 100 peers regardless of the magnitude of system expansion. 
The curve of L-BAS is very close to G-BAS, indicating that the 

performance of our distributed algorithm is close to the optimal.  

A small size index structure generates low control overhead and 
provides fast response time upon node joining or VCR operation. 
We use the number of peers contacted (peer hops) during an 

operation as the evaluation metric for control overhead and 
execution time. Fig. 4 depicts the mean peer hops during the 
partner search of a node join for both DSL and BAS. In DSL, 
though the number of peers contacted during search is logarithmic 
to the system size, about 9 peer hops are required when the system 
is about 1400. In contrast, BAS requires about 5 peer hops and the 
search cost is not sensitive to the system expansion, since the size 
of BAS index overlay is small and stable.  

A VCR-jump operation consists of two steps: leave the current 

neighborhood, and find the partners close to the new play offset. 
The first step is similar to the common leave, while the second step 
could be implemented more efficiently than new node join 
operation if we exploit the horizontal shortcuts supported by the 
skip-list. Fig. 5 depicts the peer hops of a 30%-VCR-jump 
operation (jump offset is 30% of the streaming length) in both DSL 
and BAS. Let “DSL-sum” and “BAS-sum” denote the cases simply 
combining leave and rejoin operation in DSL and BAS, 

respectively, while “DSL” and “BAS” denote those exploiting 
horizontal shortcuts to realize VCR-jump interactions. It can be 
seen that the VCR-jump cost is lower than the sum of join cost and 
leave cost. This demonstrates the effect of jumping from current 
play point using horizontal shortcuts. BAS outperforms DSL due to 
its smaller size of index overlay, thus generating fewer control 
messages and providing faster response time. 

V. Conclusion 

In this paper, we have presented buffer-assisted search (BAS) 

scheme to improve the search efficiency for P2P-based Video-on-
Demand (VoD) services. BAS exploits the redundancy of client 
buffer coverage to reduce the search time and maintenance cost. 
Simulation results have shown that our VoD system outperforms 
existing systems in search efficiency. Our future work is to deploy 
the experiments on the planet-lab test bed and build a prototype of 
our VoD system. 
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