
Efficient Search in P2P-based Video-on-Demand Streaming Service
Huicheng Chi and Qian Zhang
Department of Computer Science

Hong Kong University of Science and Technology, Hong Kong, China
{addison, qianzh}@cs.ust.hk

Abstract — Providing video-on-demand streaming service to a

large population of clients using peer-to-peer approach is drawing
great interest recently. Since clients’ demands are asynchronous
and the buffered contents are continuously changing, how to find
partners with expected data and collaborate with each other for
future content delivery are very important and challenging. In this
paper, we propose a generic buffer-assisted search (BAS) scheme to
improve partner search efficiency. Extensive simulation results

demonstrate that BAS can provide faster response time with less
control cost than the existing search methods.

I. Introduction

With the widespread deployment of broadband access, Video-on-
Demand (VoD) streaming on the Internet has received increasing

attention recently. In VoD streaming service, video can be delivered
to asynchronous users with low delay and VCR-like operation
support (e.g., pause, fast-forward, and rewind). However, streaming
to a large population of clients is very challenge due to the limited
server capacity and little deployment of IP multicast [5]. Peer-to-
peer (P2P) technology is considered to be one of the promising
solutions for the streaming service [1]. However, applying these
techniques into VoD streaming is not a trivial task due to the

following fundamental differences between the two types of
streaming [2, 3, 6].

In a typical P2P-based VoD system, cooperative peers 1 are
organized into an overlay network via unicast tunnels. The

streaming content is split into a sequence of segments, each of
which is a small playable unit, and the server distributes these
segments among clients of asynchronous demands. Each client
caches a few segments around its play offset. The client exchanges
the available segments with the partners, who have close play
offset and thus the client can fetch the expected data from its
partners with high probability. Therefore, partner search is one of
the main components in the P2P-based VoD system. For the users
in the VoD system, when joining or taking VCR operations, it

needs to search for the partners. Since different users’ demands
may be asynchronous, and the contents buffered in one peer are
continuously changing, an additional index structure is needed for
the partner search upon peer joins or VCR operations. In general,
we can assume the playing speed is identical for all the peers, so
their partner relationship will not change unless they leave, fail, or
take VCR-jump. It is noticed that there are two overlay networks in
the VoD system: the index overlay for partner search and the data

overlay for media transmission.

It is very challenging to develop an efficient partner search
structure for a large P2P-based VoD system. Due to scalability
concerns, the search structures should be distributed ones with sub-

linear search time efficiency. Some distributed structures have been
proposed with logarithmic search efficiency, e.g., AVL tree [8] and
skip-list [7]. In those structures, all peers are sorted by the play
offset and maintained in the index overlay. However, indexing all
the peers incurs non-trivial maintenance overhead, especially
considering the insertion, deletion, and rebalancing cost, since

1 User, client, peer and node are used interchangeably in this paper.

VCR operations are frequent and the nodes join or leave at will in
the dynamic P2P-based VoD systems.

In this paper, we propose a novel Buffer Assisted Search (BAS)

structure to address the above challenges. It can be observed that
there is buffer overlapping among different nodes, and removing
the nodes whose buffer range is fully covered by other nodes does
not reduce the total buffer coverage of the search structure.
Therefore, we introduce BAS structure to exploit this buffer
coverage redundancy to reduce the size of search structure. By
indexing a small subset of peers, BAS provides constant search
time efficiency and low control overhead. In addition, the BAS

structure is generic and can be implemented based on existing data
structures, e.g., AVL-tree and skip-list.

The rest of the paper is organized as follows. The background and
motivation is reviewed in Section II. Section III presents the BAS

structure. Simulation results are given in Section IV, followed by
the conclusions in Section V.

II. Background and Motivation

In this section, we briefly review the related works on partner
search in VoD service and present one concrete example that

motivates our study.

Developing the efficient search schemes for P2P-based VoD
service has been a very active research. CollectCast [4] and
oStream [1] record the play progress of all the nodes in the

centralized server. Though it is simple and easy to manage, the
server is easily overloaded in the presence of frequent peer join,
leave, and VCR operations. P2Cast [3], P2VoD [2], TAG [8], and
DSL [7] logically organize all peers into linear, tree, or skip-list
structures. Given the play offset as a key, these methods support
random search and VCR operation in a distributed manner. Each
peer maintains constant or logarithmic number of index neighbors
and the search is performed by tracing the peers hop by hop

according to the neighbor information. Although some of them
provide sub-linear search efficiency, the maintenance cost is not
trivial since all peers need to be indexed in the structure. The
frequent VCR operations and dynamic P2P environment further
aggravate this maintenance overhead.

Recent studies show that it is not necessary to index all peers

because finding a small number of partners is sufficient for the
media streaming [2, 3, 7, 8]. Therefore, it is possible to prune the
indexing structure without scarifying the search performance. We
propose BAS scheme to exploit the client buffer coverage in order
to keep the indexing structure within a small scale. In the VoD
system, each peer has a buffer to maintain contents around its play

offset and acts as a potential partner for the peers whose play offset
lies within its buffer range. If a peer, whose buffer range is fully
covered by other peers, has been removed from the indexing
structure, the other peers who use this removed peer as a partner
can still find other possible partners instead. Thus, in the BAS
structure, those nodes with redundant buffer coverage can be safely
removed from the indexing structure. Fig 1 shows an illustration
example for the effectiveness of BAS scheme, where AVL tree is
used as the basic structure. In this example, seven peers join the

system in the sequence from P1 to P7. Fig 1(a) and Fig 1(b) show

5651­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

the AVL tree and BAS structure respectively after seven peers
joined. As shown in Fig 1(a), P1 is covered by P3 and P4, P2 is
within P5, P3 is covered by P5 and P6, and P4 is covered by P6
and P7. Assume that each new peer examines the buffer overlap of
the existing peers in the BAS structure, and then P1, P2, P3, and

P4 can be removed upon the arrival of P4, P5, P6, and P7
accordingly. Thus in Fig 1(b), only P5, P6 and P7 are indexed
while the total buffer coverage is not affected. We will present how
to minimize the number of index peers while ensuring the search
effectiveness in detail in Section III.

Fig 1. The effectiveness of BAS on an AVL tree

III. Buffer-Assisted Search Overlay

The objective of BAS is to maintain as few index peers as possible
for better search efficiency. In other words, we want to minimize

the search overlay size without affecting the search effectiveness.
We first formulate this as the Minimum Buffer Cover (MBC)
problem and present a globally optimal solution. Concerning the
system scalability, we then design a distributed algorithm and show
how to apply it in the overlay construction, maintenance, and VCR
operations accordingly.

A. Minimum Buffer Cover Problem and Optimal Solution

Each peer has a buffer range around its play offset and may overlap

with other peers in buffer coverage. By observing there is buffer
coverage redundancy, BAS aims to select as few index peers as
possible without reducing search effectiveness, i.e., total buffer
coverage. It is formulated as the minimum buffer cover (MBC)

problem as follows. We consider a collection C of buffers totally
covering an integer range R [1, 2, …, M]2, and every buffer is a

consecutive subrange of R. A buffer cover for R is a subset C’ ⊆ C

such that every element in R belongs to at least one member of C’.
The goal is to find the buffer cover C’ with minimal cardinality |C’|.

We design a dynamic programming algorithm to compute the

optimal solution. Let A(0) = and A(k) be the MBC to cover Rk [1,

2, ..., k] for k ≥ 1. Obviously, |A(i)| ≤ |A(j)| for i ≤ j. We denote the

set of buffers covering number k as Yk, the smallest number in the
buffers of Yk as mk and the corresponding buffer containing mk as

χk∈Yk. If there are more than one buffers containing mk, choose the

one with longest length.

Theorem 1: If k ≥ 1, A(mk-1)∪{χ k} is also the MBC for Rk.

Proof: In any buffer cover A’ for Rk, there is at least one buffer

χ’∈(Yk A’). Assume the smallest number in χ’ is m’, then the set

A’-{χ’} at least covers Rm’-1 [1,2,…,m’-1], thus

|A’-{χ’}|≥|A(m’-1)|, i.e., |A’|≥|A(m’-1)|+1.

Recall that mk ≤ m’, we have

|A’|≥|A(m’-1)|+1≥|A(mk-1)|+1=|A(mk-1)∪{χk}|.

2 If the covering area consists of several discontinuous ranges, the
problem can be deduced into some sub-problems, each for a range
and the corresponding buffers.

Thus, |A(k)|≥ |A(mk-1)∪{χk}|. From the optimality of A(k) for Rk,

|A(k)|≤|A(mk-1)∪{χk}|. So A(k) and A(mk-1)∪{χk} must have the

same cardinality, and A(mk-1)∪{χk} is also a minimum buffer

cover for Rk.

Theorem 1 indicates the recurrence in the dynamic programming

solution is given by:

≤≤∪−
=Φ

=
.1if}{)1(

,0if
)(

MkmA

k
kA

kk χ
Note that A(M) is the optimal solution to MBC problem. There is a
trick in computing A(M). Instead of computing all A(i)’s for i<M,
we only need to trace from A(M) to A(0). Since each step requires
O(|C|) comparison time for mk and the number of steps is O(|C’|),
the total running time is O(|C|2). If the average buffer length of the
peers is much smaller than |C| (constant relative to |C|), we can
further reduce the running time by pre-assigning the buffers to their
containing numbers using O(|C|) time. Thus upon computing A(k),

only the buffers containing k are compared. Since each buffer is
compared only once, the running time is O(|C|). Thus, the total
running time can be reduced to O(|C|). The latter solution is
described in Fig 2.

1: for i = 1 to M { Yi = , A(i) = ; }

2: for each buffer χ∈C

3: for each i∈χ
4: Yi = Yi ∪ {χ};

5: j= M;
6: while (j>0) {

7: χ = argminχ{the smallest number sχ in χ, χ∈Yj };

8: A(M) = A(M) ∪{χ}; j = sχ-1; }

Fig 2. The globally optimal Dynamic Programming algorithm

Although this algorithm is efficient and provides optimal solution,
it requires global information of all peers’ buffer. This is not
practical in a large and distributed system. We propose a distributed

algorithm which makes decision only based on local information in
the next subsection.

B. Distributed Algorithm

The large and distributed systems require a distributed algorithm

that adjusts the index overlay based on local information. Since the
peers come asynchronously and not all the peers are maintained in
the index overlay, we design a distributed algorithm to calculate the
optimal solution only based on the existing index peers plus the
new comer, upon each new peer insertion. Note that, at any time,
every index peer contains at least one unique number, which is not
covered by other index peers, or else it will be removed from the
index overlay.

The basic flow of our distributed algorithm is to divide the existing
index peers into two groups according to whether they overlap with
the new comer, and then apply the dynamic programming
algorithm to the new comer plus the group overlapping with the

new comer. We denote the collection of buffers of existing index

peers by C’ and the newly added buffer by β. Let LAP = {α| α∈C’

and α β } and UNLAP = C’-LAP. Assume UNLAP covers

[1,…, i] and [j,…, M]. Let LAP’ = {α {i+1,.., j-1}| α∈ LAP} and

record the mapping between LAP and LAP’. Let D = {β}∪LAP’.

The dynamic programming algorithm is to compute the optimal

solution D’ for D. Restore the buffers in D’ according to the

mapping between LAP and LAP’. Let C” = D’∪UNLAP and it is

the optimal solution for {β}∪C’. The complexity of the distributed

algorithm is determined by the dynamic programming algorithm,

566

which is O(|D|) = O(|LAP|), i.e. the number of existing index peers
overlapping with the new peer, instead of the system size.

Theorem 2: C” is the optimal solution for {β}∪C’.

Proof: Before β’s arrival, each buffer α in C’ contains at least one

unique number, which is not covered by other buffers in C’. Since

the new buffer β does not affect the unique numbers of the non-

overlap buffers, they must remain in the optimal set. Note that
UNLAP covers [1,…, i] and [j,…, M], and the uncovered area left
becomes [i+1,…, j-1]. LAP is adjusted as LAP’ to compute the
minimum buffer cover D’ for [i+1,…, j-1]. Thus, the union of D’

and UNLAP is the minimum buffer cover for {β}∪C’.

As more peers join the system, the same operation is applied to C”

to get C3, and then C4, C5…. Similarly, Ck+1 is the optimal solution

for {β}∪Ck. Since the complexity of the distributed algorithm is

determined by |LAP| and Ck is the corresponding index overlay, we
will study the magnitude of |LAP| and compare Ck with the globally
optimal solution as follows.

Let N = |Ck| and the buffers in Ck, denoted as X1, X2, …, XN, be

ordered by their minimum numbers. li and ri are used to represent
the minimum and maximum number of Xi. Bi denotes the length of
Xi, and the average length of all buffers is B.

Lemma 3: ri<rj for i<j.

Proof: From the definition, we have li< lj for i<j. If ri>rj, then Xj

can be fully covered by Xi, which contradicts the assumption.

Lemma 4: li+2 - li > Bi.

Proof: Assume li+2 - li ≤ Bi, i.e., li+2 ≤ Bi+ li= ri. Thus, the range
from li to ri+2 is fully covered. According to the definition and

lemma 1, we get li< li+1 and ri+1< ri+2, i.e., Xi+1 is fully covered by
Xi and Xi+2, contradicting the assumption. Thus, li+2 - li > Bi.

Theorem 5: N ≤ 2M/B.
Proof: Assume N is an odd integer.

M ≥ BN + lN – l1 = BN +)(
2/)1(

1 1212

−

= −+ −N

i ii ll > BN

+
−

= −
2/)1(

1 12

N

i iB =
−

= +
2/)1(

0 12

N

i iB (1)

M>BN-1 + lN-1 – l2 = BN-1 +)(
2/)1(

2 222

−

= −−N

i ii ll > BN-1

+
−

= −
2/)1(

2 22

N

i iB =
−

=

2/)1(

1 2

N

i iB (2)

From (1) and (2), we get

2M >
−

= +
2/)1(

0 12

N

i iB +
−

=

2/)1(

1 2

N

i iB =
=

N

i iB
1

= NB,

i.e., N < 2M/B. The proof is similar when N is an even integer.

Theorem 6: The expected size of LAP is a constant.

Proof: The overlapped buffers can be categorized into two types:
the ones left the index overlay and the ones remained after

inserting the new buffer β. From Theorem 5, the index size is

bounded by 2M/B, so β‘s arrival removes at most one buffer in the

old index list on average. Lemma 4 ensures that any buffer in the
index list Xi can only overlap with Xi-1 and Xi+1. Thus on average,
there are at most three overlapped buffers found by the new buffer.

Thus, the distributed algorithm consumes constant amortized time
and bounds the index overlay size within O(M/B), where M is the
media length and B is the average buffer length of the peers. For a
typical 700MB movie, 15MB buffer ensures the index size is

within 100, no matter how large the user population is. If every

buffer is equal in size-B, then 2
/

/2

||

|| =≤
BM

BM

OPT

C
k

, where OPT is

the globally optimal solution. Our simulation results show that |Ck|
is very close to the optimal size.

C. Overlay Construction, Maintenance, and VCR Operations

This subsection presents how the distributed algorithm is

applicable to the index overlay to improve search efficiency. In this
paper, we simply reuse the structure implemented using AVL tree
or skip-list, which can provide sub-linear search efficiency.

1) Join Operation

When a new client joins the overlay, it first looks for the closest
index neighbor in O(logN) hops and selects at most I partners from
the found peer’s data neighbors, where I is the number of initial
partners. Then the new comer finds out the index peers with buffer
overlapping by tracing backward and forward along the closest
index peer’s predecessor and successor. From theorem 6, the

expected number of hops to be traced is a constant. At last the
dynamic programming algorithm is applied to the found peers plus
the new peer to figure out which peers should be pruned from the
index overlay. Thus, the expected number of nodes a new client
should contact is a constant.

2) Leave Operation and Failure Recovery

When a peer leaves or fails, its neighborship in the index overlay
and the data overlay should be adjusted for system resilience. By
maintaining a smaller index overlay, BAS reduces the control
overhead due to the adjustment of the index overlay.

A peer scheduled to leave the system should first notify its

neighbors, such that they can select new partners and re-connect
with each other to form new neighboring relations. If the leaving
peer is in the index overlay, it chooses one or more non-index
neighbors that cover its unique numbers to join the index overlay.

The node failure can be easily detected after several rounds of

failed scheduling or buffer information exchange. If the failed node
is index peer, the neighbors that detect the failure will find one or
more non-index neighbors that cover the failed node’s unique
numbers to join the index overlay.

Note that the leave or failure operation does not change the index
overlay’s property: every index peer contains at least one unique
number. Thus the theorems in last subsection still hold.

3) VCR Operations

In general, the typical VCR operations, e.g., fast-forward or rewind
movement, can be implemented with the combination of a leave
and re-join operation. However, a common VCR operation may
consist of a series of such jump movement, which is not far away
from each other, so frequent re-join operations are not efficient. If

the index structure supports horizontal shortcuts to other index
peers with logarithmic-increasing distances, the VCR operation can
jump to the new offset by skipping most unnecessary nodes. The
skip-list is one of such examples [7]. Compared with searching
from the root or top layer, following the horizontal shortcuts can
reduce the search cost significantly. BAS further reduces the
number of horizontal hops with a smaller index overlay.

In summary, the BAS scheme applies a distributed pruning

algorithm to existing mature indexing structures such that the index
overlay size is bounded within a small and stable scale O(M/B). A
small structure ensures fast response time and low maintenance
overhead.

567

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2000 4000 6000 8000 10000

Se
ar

ch
 O

ve
rl

ay
 S

iz
e

Time(sec)

Total/DSL
L-BAS
G-BAS

Fig 3. The Index Size for DSL and BAS

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 P

ee
rs

 C
on

ta
ct

ed

System Size

DSL
BAS

Fig 4. Join/Search cost for DSL and BAS

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 P

ee
rs

 C
on

ta
ct

ed

System Size

DSL-sum
DSL

BAS-sum
BAS

Fig 5. 30%-VCR-jump Cost Comparison

IV. Simulation Results
We evaluate the performance of the proposed VoD system by

comparing it with some existing systems.

A. Simulation Configuration
We use the Sprint ISP topology collected by Rocketfuel engine

[6] for system setup. It consists of 112 backbone nodes and 242
access nodes; 5 stub nodes are attached to each access node to

simulate a LAN. Thus the network size is about 1,500. The default
bandwidth settings between two backbone nodes, a backbone and
an access node, two access nodes, two stub nodes within the same
LAN are 10 Mbps, 5 Mbps, 3Mbps, and 10 Mbps, respectively.

In our simulation, the server and users are located at randomly

selected stub nodes. The communication path between any two
nodes follows the shortest path. The bit rate of the streaming media
is 500Kbps and its length is 2 hours. The segment unit is 1 second,
and the default size of the user buffer is 120 segments, i.e., less
than 2% of the entire stream. There is no user in the system at the
beginning, and users join the system following a Poisson process
with mean inter-arrival time of 3 seconds. The start offset of each

user is evenly distributed between 0 and 2 hours. Users leave when
they play to the end. For each set of configuration, 10 simulation
runs have been performed to mitigate the effect of randomness.

B. Search Efficiency and its Control Overhead

We first investigate the search performance for the BAS scheme.

For simplicity, only the BAS using skip-list structure is shown in
this section. We compare BAS with the DSL [7], which also uses
skip-list structure.

Fig. 3 depicts the size of search structure for DSL and BAS during

a 10,000 sec simulation. L-BAS represents the case where the
distributed algorithm is used, while G-BAS is the size computed by
the globally optimal algorithm. Because DSL has to maintain the
play progress of all online peers, the size of DSL increases as the
system grows with time until the system size keeps relatively stable
around 1,400 after 7,000 sec. In contrast, BAS only maintains less
than 100 peers regardless of the magnitude of system expansion.
The curve of L-BAS is very close to G-BAS, indicating that the

performance of our distributed algorithm is close to the optimal.

A small size index structure generates low control overhead and
provides fast response time upon node joining or VCR operation.
We use the number of peers contacted (peer hops) during an

operation as the evaluation metric for control overhead and
execution time. Fig. 4 depicts the mean peer hops during the
partner search of a node join for both DSL and BAS. In DSL,
though the number of peers contacted during search is logarithmic
to the system size, about 9 peer hops are required when the system
is about 1400. In contrast, BAS requires about 5 peer hops and the
search cost is not sensitive to the system expansion, since the size
of BAS index overlay is small and stable.

A VCR-jump operation consists of two steps: leave the current

neighborhood, and find the partners close to the new play offset.
The first step is similar to the common leave, while the second step
could be implemented more efficiently than new node join
operation if we exploit the horizontal shortcuts supported by the
skip-list. Fig. 5 depicts the peer hops of a 30%-VCR-jump
operation (jump offset is 30% of the streaming length) in both DSL
and BAS. Let “DSL-sum” and “BAS-sum” denote the cases simply
combining leave and rejoin operation in DSL and BAS,

respectively, while “DSL” and “BAS” denote those exploiting
horizontal shortcuts to realize VCR-jump interactions. It can be
seen that the VCR-jump cost is lower than the sum of join cost and
leave cost. This demonstrates the effect of jumping from current
play point using horizontal shortcuts. BAS outperforms DSL due to
its smaller size of index overlay, thus generating fewer control
messages and providing faster response time.

V. Conclusion

In this paper, we have presented buffer-assisted search (BAS)

scheme to improve the search efficiency for P2P-based Video-on-
Demand (VoD) services. BAS exploits the redundancy of client
buffer coverage to reduce the search time and maintenance cost.
Simulation results have shown that our VoD system outperforms
existing systems in search efficiency. Our future work is to deploy
the experiments on the planet-lab test bed and build a prototype of
our VoD system.

References
[1] Y.Cui, B.Li, and K. Nahrstedt, “oStream: asynchronous streaming

multicast”, IEEE Journal on Selected Areas in Communications, 22(1),

January 2004.

[2] T. Do, K. A. Hua, and M. Tantaoui, “P2VoD: Providing fault tolerant

video-on-demand streaming in peer-to-peer environment”, Proc. IEEE

ICC'04, Paris, June 2004.

[3] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2Cast: Peer-to-peer

patching scheme for VoD service”, in Proceedings of the 12th World Wide

Web Conference (WWW-03), Budapest, Hungary, May 2003.

[4] M. Hefeeda, B. Bhargava, and D. Yau, “A hybrid architecture for cost

effective on demand media streaming”, Journal of Computer

Networks, 44(3), pages 353-382, 2004.

[5] B. Quinn and K. Almeroth, “IP multicast applications: Challenges and

solutions”, Internet Engineering Task Force (IETF) Internet Draft, work in

progress, March 2001.

[6] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP Topologies

with Rocketfuel”, in Proceedings of ACM SIGCOMM’02, pages 133–145,

August 2002.

[7] D. Wang and J. Liu, “A Dynamic Skip List based Overlay Network for

On-Demand Media Streaming with VCR Interactions”, Technical Report,

May 2005.

[8] M. Zhou and J. Liu, “Tree-Assisted Gossiping for Overlay Video

Distribution”, to appear in Kluwer Multimedia Tools and Applications,

2005.

568

