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ABSTRACT 

Distance metric is widely used in similarity estimation. In this 

paper we find that the most popular Euclidean and Manhattan 

distance may not be suitable for all data distributions. A general 

guideline to establish the relation between a distribution model and 

its corresponding similarity estimation is proposed. Based on 

Maximum Likelihood theory, we propose new distance metrics, 

such as harmonic distance and geometric distance. Because the 

feature elements may be from heterogeneous sources and usually 

have different influence on similarity estimation, it is inappropriate 

to model the distribution as isotropic. We propose a novel boosted 

distance metric that not only finds the best distance metric that fits 

the distribution of the underlying elements but also selects the most 

important feature elements with respect to similarity. The boosted 

distance metric is tested on fifteen benchmark data sets from the 

UCI repository and two image retrieval applications. In all the 

experiments, robust results are obtained based on the proposed 

methods. 

1. INTRODUCTION 

The most straightforward way to measure the similarity between 

two features is to compute the distance between them using a 

certain distance metric, which is also one of the most popular 

methods. In many fields such as image retrieval, the Euclidean 

distance, or SSD (sum of the squared differences or 2L ), is widely 

used. However it has been suggested that this metric may not be 

suitable for all applications [1]. We find that from a Maximum 

Likelihood perspective the SSD metric is justified when the feature 

data is from Gaussian distribution [2]. Another popular distance 

metric, Manhattan distance or SAD (sum of the absolute differences 

or
1

L ), corresponds to the situation where the feature data 

distribution is Exponential. If the underlying data distribution is 

known or can be well modeled, it is possible to find the best 

distance function that matches the distribution. In most research 

work it is assumed that the real distribution is either the Gaussian or 

the Exponential. However such assumption is invalid for many 

applications. When the underlying distribution is unknown and 

could be neither Gaussian nor Exponential, finding a suitable 

distance metric becomes a challenge. 

Similarity measurement could be used in content-based image 

retrieval where feature elements are extracted for different 

statistical properties for entire digital images, or perhaps with 

specific region of interest. Because of the heterogeneous sources 

those features may be from different distributions. Most of the 

attention in previous research work focused on extracting low-level 

feature elements such as color, texture, and shape with little 

consideration on their distributions. To compute the Euclidean 

distance between two feature vectors is still the most commonly 

used method for measuring the similarity between them.  

Although we have done some research on utilizing the data 

distribution information for image retrieval based on similarity 

measurement [2, 3], the relation of the distribution model and the 

distance metric is still not clear. It has been proven that Gaussian, 

Exponential, and Cauchy distribution correspond to 2L , 1L , and 

Cauchy metrics, respectively [2]. However there are many other 

distribution models whose corresponding distance metrics are 

unknown. Besides, the similarity estimation based on feature 

elements from unknown distributions is an even more difficult 

problem. In this paper we extend our previous work in [2, 3] in 

proposing a guideline to learn a robust distance metric as accurate 

similarity measurement.  

The rest of the paper is organized in the following way. Section 

2 presents general analysis on distance metrics based on the 

maximum likelihood criterion. Section 3 introduces our novel 

distance metrics and the boosted version. In Sections 4 we use the 

new distance metrics as similarity measurement in experiments of 

motion tracking in a video sequence and content-based image 

retrieval. Discussions and conclusions are given in Section 5. 

2. ANALYSIS ON DISTANCE METRICS 

2.1 Distance Metric and Data Distribution 

Based on Maximum Likelihood criteria, the L2 metric, L1 metric, 

and Cauchy metric are proven to be the optimal distance measure 

for the Gaussian, Exponential, and Cauchy distribution models 

respectively [2]. Since there are many other distribution models, it 

is reasonable to assume that there may be a certain model that fits 

the unknown data structure better. Consequently more accurate 

similarity estimation is expected if the metric could reflect the real 

distribution. We model this problem of finding the best distance 

metric through distance metric analysis. Mathematically it can be 

formulated in the following way. 

Suppose we have some observed data from a certain distribution 

                          ii dx                                        (1) 

where
i

d , Ni ,,1  are data components and  is the distribution 

mean or a sample from the same class. In most cases is unknown 

and may be approximated for similarity estimation. For some 

function  

0),(xf                         (2) 
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which satisfies the condition 0),(f , can be estimated by 

ˆ  which minimizes 

N
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It is equivalent to satisfy 
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We can find a closed-form solution of the estimated mean 

),,,(ˆ
21 Nxxxg  for certain distributions. The arithmetic mean, 

median, harmonic mean, and geometric mean in Table 1 are in that 

category. It’s proven that the 
2

L  metric (SSD) corresponds to the 

arithmetic mean while the 1L  metric (SAD) corresponds to the 

median. However, the distance metrics associated with the 

distribution models that imply the harmonic mean or the geometric 

mean haven’t been introduced in literature before. Those metrics in 

Table 1 are inferred using equation (4). It is obvious that in 

distribution associated with the harmonic and geometric estimations, 

the observations which are far away from the correct estimate ( )

will make less contribution in producing , as distinct from the 

arithmetic mean. In that case the estimated values will be less 

sensitive to the outliers and they are therefore more robust. 

Table 1. Distance metrics and mean estimation for different 

distributions 
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2.3 Generalized Distance Metric Analysis 

Inspired by the robust property of harmonic and geometric distance 

metrics we try to generalize those metrics and find new metrics that 

may fit the distribution better. In Table 1 we list three families of 

distance metrics which are derived from the generalized mean 

estimation using equation (4). Three parameters p, q, r are used to 

define the specific distance metrics and describe the corresponding 

distribution models which may not be explicitly formulated as 

Gaussian and Exponential. It is obvious that in the generalized 

harmonic mean estimation the 1st type is generalized based on the 

distance metric representation, while the 2nd type is generalized 

based on the estimation representation. However, if 1p and

1q , both types will become ordinary harmonic mean, and if 

2p  and 1q , both types will become arithmetic mean. As for 

the generalized geometric mean estimation, if 0r , it will become 

an ordinary geometric mean. It is obvious that the generalized 

metrics correspond to a wide range of mean estimations and 

distribution models. It should be noted that not all mean estimations 

have closed-form solutions as in Tables 1. In that case ˆ can be 

estimated by numerical analysis, e.g., greedy search of ˆ to

minimize .

3.  BOOSTING DISTANCE METRICS FOR 

SIMILARITY ESTIMATION 

3.1 The Problem 

We found that the most widely applied distance metric is the L2

distance. It assumes the data has a Gaussian isotropic distribution. 

However if the dimensionality of the feature space is high, the 

assumption of isotropic distribution is often inappropriate. 

Furthermore, since the feature elements are often extracted for 

different statistical properties, their distributions may not be the 

same and different distance metrics may better reflect the 

distributions for each feature element. Thus, an anisotropic and 

heterogeneous distance metric may be more desirable for estimating 

the similarity between features. 

3.2 Our Approach 

Inspired by the discussion in Section 3.1 we propose a novel 

boosted distance metric as similarity measurement where a 

similarity function for certain classes of samples can be estimated 

by a generalization of different distance metrics on selected feature 

elements. Specifically we adopt the idea of AdaBoost with decision 

stumps [4] and our novel distance metrics to measure the similarity.  

Given a training set with feature vectors ix , the similarity 

estimation is done by training AdaBoost with difference vector  d

obtained by different distance metrics between vectors ix and jx ,

e.g., jid xx for 
1

L metric, where each difference vector d has 

an associated label dl

                    

otherwise0

classsamefromareandif1 ji xx

dl                         (5)      

A weak classifier 
th is defined by a distance metric m on a 

single feature element f with estimated parameter(s) , which could 

be as simple as the mean and/or a threshold. The label prediction of 

the weak classifier on feature difference d is }1,0{)(,, dh fm . The 

boosted distance metric )(dht
is learned iteratively by weighted 

training samples with different distance metrics on each feature 

element and selecting the most important feature elements for 

similarity estimation, where Tt ,,1 . Consequently we derive a 

predicted similarity )(),(
1

dhS
T

t
ttji xx  that is optimal in a 

classification context, where t  is the weight of classifier at the tth

iteration based its classification error [4]. 

Three major advantages could be found in the proposed 

method: i) the similarity measure could only relate to the elements 

that are most useful for classification; ii) best distributions that fits 
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each element are found; iii) the proposed method is effective and 

robust for the classification when we have a small training set 

compared to the number of dimensions. The boosted distance 

metric could be considered as a non-linear dimension reduction 

technique. This retains the most important elements to similarity 

judgment, because the training iteration T is usually much less than 

the original data dimension. This would be very helpful for 

overcoming the small sample set problem. Another good property 

of the boosted metric is that it is general and can be plugged into 

many similarity estimation techniques, such as the widely used K-

NN. 

The boosted similarity is more suitable for K-NN than other 

popular metrics when the training set is small. It could be explained 

in the following way: i) if N is the size of the original training set, 

this is augmented by using a new training set with )( 2NO  relations 

between vectors. This makes AdaBoost more robust against over-

fitting; ii) AdaBoost complements K-NN by providing an optimal 

similarity. Increasing the effectiveness for small training sets is 

necessary in many real classification problems, and in particular it 

is necessary in applications such as retrieval where the user 

provides a small training set on-line.  

4. EXPERIMENTS AND ANALYSIS 

4.1. Test on New Distance Metrics  

In this experiment, we use our new distance metrics to estimate 

similarity that is mainly introduced by noise. 300 images from the 

Corel database are randomly selected. For each selected image, a 

copy is printed and digitized by a scanner, and resized. The whole 

process introduces noise due to the dithering patterns of the printer 

and scanner.  We repeat the process 10 times for each selected 

image. According to this ground truth, we determine the real 

distribution of the similarity noise considering two different spaces: 

image space (or intensity space) and feature space. In image space, 

the intensity of pixel is used. In feature space, we have used two 

visual features: wavelet-based texture [5], and edge-based structure 

feature [6]. We compare our new metrics with the conventional L2

and L1 metrics, and the Cauchy metric.  

Table 2. The Chi-square test values for distance metrics 

Error Metric Structure Texture Intensity

1L 0.2022 0.5269 2.6562

2L 0.2425 0.5017 4.1066

Cauchy 
0.3365
(a=5)

0.4953  
(a=15.1) 

3.0607 
(a=24.8)

Harmonic 0.3087 0.2701 3.0970

Geometric 0.3138 0.4834 3.2940

1st type generalized 
harmonic (gh) 

0.1648
(p=1.8) 

0.1679  
(p=-4.9)

3.0970 
(p=1.0)

2
nd

 type generalized 
harmonic (gh) 

0.2082
(q=-0.1)

0.1331
(q=-0.7)

2.2317 
(q=-3.0)

Generalized geometric  
(gg)

0.3086
(r=4.9)

0.2959  
(r=4.7)

2.0374
(r=-4.2)

best metric 
1

st
  gh

(p=1.8) 
2

nd
  gh 

 (q=-0.7) 
gg

(r=-4.2)

Chi-square test is first used to evaluate how well the distance 

metric fit the data distribution. There are several conclusions from 

Table 2: (i) the L1 metric and Cauchy metric are more suitable than 

L2 metric, e.g., in the intensity (image) space. This observation 

agrees with the results in [2]. (ii) Better estimations can be obtained 

by a large set of error metrics other than L1, L2, and Cauchy metrics, 

e.g., for the structure feature. This shows the effectiveness of our 

new metrics. Specifically, nonlinear estimations based on the 

generalized harmonic mean and generalized geometric mean are 

more robust than those based on the L1 metric and L2 metric. 

Figure 1. The retrieval accuracy of four metrics on image 

database; for Cauchy metric, 5a ; and for 1
st

-type 

generalized harmonic mean, 8.1p .

To compare the image retrieval results, we query the image 

database using different distance metrics and inspect how they 

affect the retrieval results. The precision-recall plot is used as the 

performance measure. Recall is a measure of the completeness of 

the retrieved set, i.e., the percentage of retrieved objects in the 

correct answer set. Precision, on the other hand, measures the purity 

of the retrieved set, i.e., the percentage of relevant objects among 

those retrieved.  

Figure 1 shows the precision-recall graph. The curve 

corresponding to the 1st-type generalized harmonic mean 

( 8.1p  ) is above the others (comparable to 
1

L  for some range), 

showing that the method using the 1st-type generalized harmonic 

mean and  
1

L are more effective than other metrics. 

4.2. Test in Motion Tracking 

In this experiment we test our novel distance metrics along with the 

traditional ones on motion tracking application. We use a video 

sequence containing 19 images on a moving head in a static 

background [7]. For each image in this video sequence, there are 14 

points given as ground truth.  

Figure 2. Average tracking distance of the corresponding points 

in successive frames; for Cauchy, 1.7 , and for generalized 

geometric mean, 0.7r .

The motion tracking algorithm between the test frame and 

another frame performs template matching to find the best match in 

a 55 template around a central pixel. In searching for the 

corresponding pixel, we examine a region of width and the height 

of 7 pixels centered at the position of the pixel in the test frame. 
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The idea of this experiment is to trace moving facial expressions. 

Therefore, the ground truth points are provided around the lips and 

the eyes, which are moving through the sequences. 

The tracking distance represents the average template matching 

results between the first frame and a later frame. Figure 2 shows the 

average tracking distance of the different distance metrics. The 

generalized geometric mean metric with 0.7r performs best, 

while Cauchy metric outperforms both 
1

L  and 
2

L .

4.3. Comparison to the State-of-the-Art on Benchmark 

Dataset 

To evaluate the performance of our boosted distance metric, we 

compare it with several well-known traditional approaches. 

Thirteen benchmark datasets from UCI machine learning repository 

are used for training and testing.  

The traditional distance metrics we tested are: Euclidean 

Distance, Manhatan Distance, RCA [8] distance, Mahalanobis 

distance with the same covariance matrix for all the classes (Mah)

and Mahalanobis with a different covariance matrix for every class

(Mah-C). The last three metrics are sensitive to the small sample set 

problem. So a diagonal matrix D could be estimated instead of 

original weight matrix W to simplify that problem and consequently 

we can obtain three metrics RCA-D, Mah-D and Mah-CD. To make 

the comparison complete, we also test the original AdaBoost with 

decision stump (d.s.) and C4.5. 

Table 3. Comparison to traditional distance metric and 

AdaBoost on UCI datasets 

Error Rate 

(%) 

Traditional 

Metric

AdaBoost 

+d.s. 

AdaBoost 

+C4.5 

Boosted 

Metric

ad
17.31 

(L1)
12 11.42 8.92

arrhythmia 
37.02 

(RCA-D) 
31.39 29.94 25.62

splice 
10.55 

(Mah-D) 
5.94 4.84 4.89

sonar 
26.1 

(Mah-CD) 
25.95 25.81 25.35

spectf 
31.16 

(Mah-D) 
28.65 27.18 26.2

Ionosphere 
10.78 

(RCA) 
19.92 19.92 17.35

wdbc 
6.83 

(Mah-CD) 
5.81 5.37 4.32

german 
38.74 

(Mah-D) 
34.31 33.18 31.6

Vote1 
9.07 

(L1)
6.37 6.37 6.18

credit 
19.18 

(Mah-CD) 
17.97 17.21 17.63

Wbc 
5.25 

(RCA) 
5.7 5.34 4.23

pima 
34.55 

(Mah-CD) 
31.02 29.96 28.12

liver 
41.11 

(Mah) 
35.51 35.43 32.77

Due to the space limitation, only the traditional distance metric 

that gives the best performance in each data set is shown. The 

smallest error rates are highlighted in bold. Note that this 

experiment is different from that of [3] in that multiple distance 

metrics are boosted for optimal performance. From the results in 

Table 3 we find that our boosted distance metric performs the best 

in 10 out of 13 datasets. It provides comparable results to the best 

performance on 2 datasets. Only in Ionosphere dataset is our 

method outperformed by the traditional distance metric. It proves 

that our method could discover the best distance metric that reflects 

the distribution and selects the feature elements that are 

discriminant in similarity estimation. 

5.  DISCUSSIONS AND CONCLUSIONS 

In this paper we first analyze the relation between distance metric 

and data distribution. New distance metrics are derived from 

harmonic, geometric mean and their generalized forms are 

presented and discussed. Those new metrics are tested on several 

applications in computer vision and we found the estimation of 

similarity can be significantly improved.  

Since the feature elements used in similarity estimation are 

often from heterogeneous sources, we find the assumption that the 

feature has a unified isotropic distribution is inappropriate. To 

substitute traditional anisotropic distance metric, we proposed a 

boosted metric that does not make any assumption on the feature 

distribution. It can find optimal distance metrics on each element to 

capture the underlying feature structure. Since the learned distance 

metric only associates with selected elements, the boosted distance, 

it is more robust to small sample set problem. It also has the 

dimension reduction effect which may be very useful to alleviate 

high-dimensionality problem. We find that the automatic metric 

adaptation and element selection in our boosted distance metric 

bridge the gap between the high-level similarity concept and low-

level features. The experimental results have proven the proposed 

method is more effective and efficient than traditional distance 

metrics.  

In the future we would like to incorporate our new metric into 

state-of-the-art classification techniques and evaluate the 

performance improvement. 
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