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ABSTRACT

With the advent and proliferation of digital cameras and com-
puters, the number of digital photos created and stored by
consumers has grown extremely large. This created increas-
ing demand for image retrieval systems to ease interaction be-
tween consumers and personal media content. Active learn-
ing is a widely used user interaction model for retrieval sys-
tems, which learns the query concept by asking users to la-
bel a number of images at each iteration. In this paper, we
study sampling strategies for active learning in personal photo
retrieval. In order to reduce human annotation efforts in a
content-based image retrieval setting, we propose using mul-
tiple sampling criteria for active learning: informativeness,
diversity and representativeness. Our experimental results show
that by combining multiple sampling criteria in active learn-
ing, the performance of personal photo retrieval system can
be significantly improved.

1. INTRODUCTION

As the rate of personal digital media creation rises and storage
becomes cheaper, the demand for solutions to manage per-
sonal photo collections is increasing tremendously. To this
moment, existing image management systems mostly rely on
keywords in a form of user annotation or the text that ac-
companies images for searching. Examples of such systems
include web-based search provided by major search engine
companies. This approach, however does not seem to be fea-
sible for personal photo collections. The mere fact of target-
ing personal photos instead of catalog images brings several
new challenges to the task of retrieval [1]. It is no longer
reasonable to assume that a user would be willing or able to
annotate consistently his or her complete image database. The
tedious task of labeling appears even more difficult once we
consider the very dynamic nature of a database of personal
photographs. As a result, in this work, we are not considering
query by keyword as a sole query modality for personal photo
retrieval systems. Instead, we focus our attention on content-
based queries where the only information that is readily avail-
able in the image file is used for search and retrieval. Such
information used to compare images may consist of multiple

visual features such as color, texture, objects, points of inter-
est, etc.

A well-known problem of dealing with media data is the
so-called “semantic gap”. Once we choose not to rely on text
information, we are faced with the problem of communicat-
ing user requests expressed in terms of high-level concepts
(like “birthday party”, “vacation trip”) to a retrieval system
that only “understands” language of low-level image features
(e.g., color histogram, transform coefficients, etc.). To com-
plicate things further, in personal photo databases the nature
of stored data as well as query concepts for retrieval are highly
user specific and often vary over time. Active learning-based
image retrieval systems have recently received a lot of in-
terest from academic and industry [2] because they offer a
promising solution to the semantic gap problem and provide
mechanism for online adaptation. Starting with one or several
query examples, the interactive process allows the user to re-
fine his/her request by giving feedback. Usually, the feedback
from users to the systems is presented by binary labels indi-
cating whether or not the photo belongs to the desired query.

In order to be practical, the active learning-based retrieval
system cannot ask users to wait many iterations to get sat-
isfactory results. Ideally, the feedback of the system should
provide most useful (for the system) samples to the users to
label and converge fast to the desired query concept. In this
paper, our goal is to build a sampling strategy for active learn-
ing in the relevance feedback setting and efficiently retrieve
relevant photos. To accelerate the learning of query concepts,
we propose using multiple criteria: informativeness, diversity
and representativeness that employed by the system to select
the photos presented to the user at every feedback round. Our
results for a realistic retrieval system and two personal photo
databases of several thousand pictures demonstrate that this
multi-criteria sampling mechanism can improve retrieval per-
formance as compared to the state-of-the-art solutions pub-
lished in literature.

2. MULTI-CRITERIA SAMPLING STRATEGIES
FOR ACTIVE LEARNING

Active learning processes training data incrementally, using
the model learned “so far” to select particularly useful exam-

5291424403677/06/$20.00 ©2006 IEEE ICME 2006



ples for labeling. Eventually, active learning methods reduce
the number of instances that must be labeled to achieve a par-
ticular level of accuracy. Consider the problem of learning a
binary classifier on a partially labeled database D. Let L be
the labeled set and U be the unlabeled set (U = D \ L). The
active learning system comprises of two stages:

• A learning engine to train a classifier on L. A learn-
ing engine is crutial for achieving good classification
performance with limited training data.

• A sampling engine to select samples from U for users
to label before passing it to the learning engine for next
feedback iteration. A sampling engine is crutical for
choosing the most valuable samples for users to label
and converging to satisfied results fast.

Recent work on active learning often uses support vector
machines (SVMs) [3] as the learning engine. In our system,
we also employ SVMs as our learning engine because of their
effectiveness in handling a small training data set. Given a set
of training data with labels {(x1, y1), · · · , (xn, yn)}, where
xi is the ith training instance and yi is its class label (−1
denotes irrelevant and +1 denotes relevant), SVMs separate
these two classes by a hyperplane with the maximum margin
[3]. For nonlinearly separable cases, SVMs can project the
training data onto a higher dimensional feature space via a
Mercer kernel operator K . We can write K(u, v) = Φ(u) ·
Φ(v), where Φ is an input-to-feature space mapping function,
and · denotes an inner product. The class prediction function
for a data instance x is formulated as

f(x) =
p∑

i=1

αiyiK(x, xi) + b, (1)

where αi is the Lagrange multiplier of xi and b is the offset.
The rest of the paper focuses on the sampling engine. Our

objective is to control the labeling effort and accelerate the
learning process by providing users the most valuable sam-
ples to label. In order to achieve the objective, we propose
our sampling strategy based on three criteria: informative-
ness, diversity and representativeness.

2.1. Informativeness

This sampling strategy aims at selecting unlabeled data that
can add most information to the current classifier. Tong and
Chang proposed informativeness-based selection criterion in
[4]. The basic idea is to select the most informative candi-
dates whose representations in the feature space induced by
the kernel are closest to the SVM hyperplane. In the other
words, the data that have the prediction value |f(x)| close to
0 are the most uncertain and informative samples. Given a set
of unlabeled data U = {u1, · · · , un}, the informativeness of
ui is defined as

informativeness(ui) = 1 − |f(ui)|, (2)

where the distance |f(ui)| has been normalized.

2.2. Diversity

Selecting examples exclusively based on the distances to the
classification hyperplane might result high redundancy in the
selected training set. Brinker [5] incoporated another sam-
pling criteria of diversity, which encourages the selection of
unlabeled samples that are far from the selected set and re-
moves the redundancy within the selected samples. The re-
dundancy of samples is measured by the angles between the
samples.

Given a set of unlabeled data U = {u1, · · · , un}, the al-
gorithm incrementally adds example ui to the selected set S
for labeling in next iteration. The diversity of ui is defined as
minimizing the redundancy between ui and S:

diversity(ui) = 1 − maxsj∈S
K(ui, sj)√

K(ui, ui)K(sj , sj)
. (3)

2.3. Representativeness

In addition to the most informative and diverse examples, we
also prefer the most representative examples from the unla-
beled pool. The examples with high representativeness will
add more information to the training set. The representa-
tiveness of an example can be evaluated on how many ex-
amples are similar to it. Given a set of unlabeled data U =
{u1, · · · , un}, the representativeness of ui is defined as the
average similarity between ui and all the other data in U .

representativeness(ui) =

∑
j �=i K(ui, uj)

n − 1
(4)

2.4. Multi-criteria Sampling

In order to combine these three criteria and strike a proper
balance between them, we propose multi-criteria sampling
strategy. We incrementally construct a new training batch S
from the unlabeled data pool as Figure 1 shows. We com-
bine the informativeness, diversity and representativeness cri-
teria using the function w1 × informativeness(xi) + w2 ×
diversity(xi)+w3×representativeness(xi). The individ-
ual importance of each criterion is adjusted by w1, w2 and w3.
We add the candidate example xi to the selected labeling data
set S one by one until the size of S grows to the predefined
value h.

3. EFFICIENT IMPLEMENTATION

To select new examples, a naive way to calculate the diversity
value of each candidate is to evaluate it against all the data al-
ready added in S, which results in a quadratic dependence of
computational time on h, the size of the new selected batch.
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Input:
U = {u1, · · · , un}; /* A set of unlabeled data */
h; /* the size of selected data for labeling */
w1, w2, w3; /* weights of three criteria */
Output:
S; /* A set of selected data for labeling */
Function calls:
representativeness(ui); /* representativeness of ui */
diversity(ui); /* redundancy of ui */
informativeness(ui); /* informativeness of ui */

Begin:
1) S = ∅; /* Initialization */
2) repeat
3) selected = argmaxi∈U\S(w1 × informativeness(ui) +
w2 × diversity(ui) + w3 × representativeness(ui));
4) S = S

�{uselected};
5) until card(S)=h;
6) return S;
End

Fig. 1. Sample Selection Strategy.

An efficient implementation of diversity evaluation was pro-
posed in [5]. The main idea is to cache the diversity values for
all card(U \S) unlabeled examples and perform an update if
the cosine of the angle between an unlabelled example and a
newly added example is greater than the stored maximum.

To calculate the representativeness value of each candi-
date, a naive way is to evaluate it against all card(U \ S)
unlabeled examples, which results in O(hn2) computational
cost in each feedback iteration (n is the number of unlabeled
data.) It is more efficient to cache the representativeness val-
ues for all card(U \ S) unlabeled examples and perform an
update when a new example is added to S.

The complete pseudo code of an efficient implementation
of the sample selection strategy is given in Figure 2. Before
any feedback, the representativeness of each data is calculated
using Equation 4 and saved in the array of repre. In each
feedback iteration, this array will be passed to the algorithm
as inputs and updated when new data is added to the labeling
pool (step 15).

4. EXPERIMENTAL RESULTS

In this section, we will evaluate the effectiveness of our pro-
posed multi-criteria sampling strategy for active learning in
personal photo retrieval. We conducted our experiments on
two personal photo datasets contributed from our researchers.
The first dataset, named as DI, contains around 5k photos
taken over five years. The second dataset, named as DII, con-
tains around 2k photos taken over three months. The owner
of DI proposed 21 queries she was interested in. The owner
of DII proposed 22 queries that he was interested in. The
query semantics varies from object and place queries to com-
plex event queries. The percentage of photos in the dataset
relevant to each query varies from 0.03% to 2%.

We utilized Scale-invariant feature transform (SIFT) [6]

Input:
U = {u1, · · · , un}; /* A set of unlabeled data */
repre; /* An array of representativeness values for unlabeled data */
h; /* the size of selected data for labeling */
w1, w2, w3; /* weights of three criteria */
Output:
S; /* A set of selected data for labeling */
Variable:
info = array[n] of double;
maxCos = array[n] of double;
Function calls:
swap(i, j); /* swap all associated values at position i and j */
informativeness(ui); /* informativeness of ui */
K(ui, uj); /* kernel value between ui and uj */

Begin:
/* Initialization */
1) S = ∅;
2) for i = 1 to n do
3) info[i] = informativeness(ui);
4) maxCos[i]=0;
5) end for

/* select examples for labeling until card(S)=h */
6) for k = 1 to h do
7) selected = argmaxi∈U\S(w1 × info[i] + w2 × (1 −
maxCos[i]) + w3 × repre[i]);
8) S = S

�{uselected};

/* swap the selected example and the kth unlabeled example */
9) swap(k, selected);

/* update diversity value and representativeness value */
10) for j = k + 1 to n do

11) cos =
K(uk,uj)√

K(uk,uk)K(uj ,uj)
;

12) if cos > maxCos[j] then
13) maxCos[j]= cos;
14) end if
15) repre[j] = (repre[j]× (n−k)−K(uk, uj))/(n−k−1);
16) end for

17) end for
18) return S;
End

Fig. 2. An Efficient Implementation of Sample Selection.

descriptors as feature representation. Each photo is described
by a set of feature points, and each feature point is described
by a 128 dimensional feature vector. For measuring similarity
between photos, we have designed a similarity metric based
on feature point match in the same flavor of the work from
Grauman and Darrell [7].

For each query session, we randomly selected one rele-
vant photo and 19 irrelevant photos as the initial training batch
(RF=0). The system presented photos in decreasing order of
relevance. At the same time, the system returned 20 images
for users to label. Users were expected to label them as rele-
vant or irrelevant to the query. As labelled data added to the
training pool, the classifier were re-trained and generated a
new list of relevant photos. This relevance feedback were re-
peated for five iterations (RF=1,...,5). The performance was
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ITERATIONS I I + D I + R D + R I + D + R

RF=0 0.295

RF=1 0.419 0.418 0.456 0.306 0.462

RF=2 0.528 0.533 0.549 0.324 0.557

RF=3 0.582 0.582 0.576 0.332 0.605

RF=4 0.611 0.624 0.625 0.341 0.661

RF=5 0.640 0.646 0.654 0.344 0.682

Table 1. MAPs for 21 queries of DI.

evaluated based on the sorted photo list after each iteration
and averaged over 10 runs. The retrieval system performance
is measured using NIST average precision (AP), which gives
a global evaluation of the system over all the precision and
recall values [8].

Table 1 shows the mean average precision (MAP) for 21
queries of DI at each feedback iteration. We evaluated five
different sampling strategies for selecting data to label: us-
ing informativeness criterion only (I), using informativeness
and diversity criteria (I + D), using informativeness and rep-
resentativeness criteria (I + R), using diversity and repre-
sentativeness criteria (D + R), and using informativeness,
diversity and representativeness criteria (I + D + R). In
our experiments, the individual importance of each criterion
informativeness, diversity and representativeness was set as
w1 = 0.47, w2 = 0.20 and w3 = 0.33.

For all these five methods, the MAPs for the initial re-
trieval (RF=0) were the same because there was no feedback
at that stage. When only using diversity and representative-
ness criteria (D + R), the performance didn’t get too much
improvement by doing relevance feedback. And the overall
performance was the worst among all these five approaches.
The possible reason is that these two criteria mainly focus
on optimizing data distribution of the selected training data,
but might not add more information to the classifier. For the
other four methods, the performance of the retrieval system
improved tremendously during relevance feedback.

Compared to using informativeness criteria only (I), both
I +D and I +R could perform better. However, the most sig-
nificant improvement was observed when all the three criteria
(I + D + R) were combined.

Table 2 shows the mean average precision (MAP) for 22
queries of DII at each feedback iteration. We also compared
the results when employing five sampling strategies: I , I+D,
I + R, D + R, and I + D + R. Similar to DI, when only
using diversity and representativeness criteria (D + R), the
performance was the worst among all these five approaches.
When all the three criteria (I + D + R) were combined, the
performance was the best.

The experimental results show that a) informativeness cri-
terion is the most important criteria by adding useful informa-
tion to the classifier; b) diversity and representativeness crite-
ria can optimize data distribution and reduce the redundancy
of the selected training data; c) combining informativeness,

ITERATIONS I I + D I + R D + R I + D + R

RF=0 0.345

RF=1 0.527 0.538 0.538 0.350 0.568

RF=2 0.620 0.623 0.626 0.363 0.646

RF=3 0.678 0.690 0.699 0.377 0.702

RF=4 0.714 0.736 0.732 0.400 0.751

RF=5 0.743 0.762 0.766 0.412 0.785

Table 2. MAPs for 22 queries of DII.

diversity and representativeness criteria as the sampling strat-
egy for active learning will help learn the query concept more
quickly and cost less in annotation.

5. CONCLUSIONS

In this paper, we have studied the sampling strategies for ac-
tive leraning in personal photo retrieval. Our algorithm se-
lects samples to label in each feedback iteration by combining
three criteria informative, diverse and representative. This ap-
proach provides a fast method to obtain better photo retrieval
performance and costs less human labeling effort. Prelimi-
nary experiments show that by considering multiple sampling
criteria in active learning, the performance of photo retrieval
system can be improved. In our future work, we will experi-
ment our active learning sampling strategy with other learning
engines besides support vector machines.
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