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ABSTRACT

Blocking artifact is the most prevailing degradation caused 

by block-based DCT coding techniques under low bit-rate 

conditions. To alleviate blockings perceptually, it is 

desirable to measure the visibility of blocking artifacts. In 

this paper, we propose an efficient method of estimating the 

visual sensitivity of blocking artifacts in block-based DCT 

coding. The differences on block boundaries are measured 

and transformed into block discontinuity map. We consider 

the effects of luminance adaptation and texture masking on 

the blockings and integrate them using nonlinear operator to 

form an overall masking map. This masking map is then 

incorporated with the discontinuity map to generate the 

Blocking Visual Sensitivity Map (BVSM).  This map can be 

used to guide perceptual quality assessment, codec 

parameter optimization, post-processing, etc. We 

demonstrate the validity of the BVSM through its 

application in image quality assessment.  

1. INTRODUCTION

Many broadly used image/video coding methods are based 

on block-wise DCT (e.g. JPEG, MPEG). When the bit rate 

is low, coarse quantization on the DCT coefficients brings 

some artificial discontinuities across the block boundaries 

on the decoding end, which is known as blocking effect. 

Some post-processing schemes are often introduced to 

supply better visual qualities of the decoded image/video, 

and that is called “deblocking”. While the deblocking 

technique has been thoroughly studied through the years [1], 

we want to take a look at the “blockings” from a 

psychophysical point of view, and predict the perceptibility 

of the blocking artifacts by the Human Visual System 

(HVS).

Abounding research results from psychophysical 

studies have been assimilated by visual compression 

techniques and have fundamentally improved the capability 

of visual communication systems.  The influences of spatial 

masking phenomena (e.g. Contrast Sensitivity Function 

(CSF), luminance adaptation, and contrast masking) on the 

HVS have been well simulated by perceptual models (e.g. 

Just Noticeable Distortion (JND) profiles [2]). And these 

perceptual-plausible methods show excellent performance 

in many applications. However, much attention of engineers 

in this field goes into estimating the masking effects on a 

whole-image level and they often compute perceptual 

models for every pixel in the image [3-5].  Rather than that, 

in this paper, we emphasize on modeling the masking 

effects on blocking artifacts and estimate their visual 

sensitivity.  

In this paper, the detailed computation steps of BVSM 

are given in Section 2; the application of BVSM in no 

reference image quality assessment is introduced in 

Section3; and Section 4 concludes this paper. 

2. BLOCKING VISUAL SENSITIVITY MAP 

ESTIMATION

The flow chart of the computation of BVSM is illustrated in 

Fig. 1, where the output of each step is also presented 

through an example of “Lena”. 
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where Q  denotes the quantization step. From (

find that the disparities between consecutive blocks are 
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2.2 Texture masking in blocks 

We first categorize the blocks according to the properties 

hen estimate the masking 

rding to 

 DCT coefficients. And for the 

for its DCT coefficients and t

effects on the aforementioned block discontinuities. 

2.2.1 Block Classification 
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2.3.1 Luminance Adaptation of Blocking 

The measured just visible difference between blocks under 

 Fig. 2. As can be certain luminance conditions is shown in

found that the blocking visibility threshold in middle 

luminance range is low, which means that the HVS is more 

sensitive. Similar result has been reported for pixels in [3]. 

We use a piecewise parabola to approximate the measured 

thresholds
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Figure 2. Blocking visibility threshold measurement and fitting 

2.3.

With the fitted visual sensitivity curve, we now can define 

2 Masking Effect Estimation 

the luminance masking as 
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2.4 Nonlinear addition of masking effects 

ent to the av e luminanc

T

and luminance masking, we use a nonlinear 

[7] to combine these two masking effects  

0 0 1 1 0 0 1 1 0 0 1 1, | , , | , , | ,

m , | , ,0 0 1 1 0 0 1 1in , | ,

M a b a b TM a b a b LM a b a b

TM a b a b LM a b a b
.(13)

0,1 is a gain reduction factor, and we set 0.3  in 

this paper. 

2.5 Perceptual Integration and post-processing 

Hereinafter, like the depiction for block discontinuity map, 

we denote 
0 0 1 1, | ,M a b a b as ,M x y for convenient

otherwise

description. The blocking visual sensitivity of the image can 

now be define
1

, , , , 0
,

D x y M x y if D x y M x y
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Note that the values in masking map, discontinuity ma

BVSM should actually being at some ‘half-pixel’ positions. 

AGE QUAITY ASSESSMENT 

score of the BDCT coded im ge, which is named as mean 

p and 

The resultant blocking visual sensitivity map usually has 

some isolated points and small regions, we can impose a 

morphology-based post-processing step to clear them and 

generate the final BVSM.  

3. APPLICATION IN IM

The BVSM can be easily pooled to generate an impairment 

a

blocking visual sensitivity (MBVS) 

1 1

1 M N

x y

,MBVS BV
M N

SM x y .  (15) 

Where M and N are image dimensions. And we find 

0.3 ~ 0.5 often gives the best pooling results. 

ty metrics 

for

els versus DMOS with 95% confidence 

inte

An effective me blocking visual 

nsitivity has been proposed. We integrate the luminance 

adaptation and the texture masking effects of the HVS with 

We now compare the performance of MBVS with those 

ell-known no-reference image qualiof other two w

BDCT coded images, namely Wu’s mean generalized 

blocking impairment metric (MGBIM) [8] and Wang’s 

JPEG-Quality-Score (JQS) [9]. The experiment was 

conducted on the JPEG dataset in the LIVE image database 

release 2 [10], which consists of 233 images with their 

Difference Mean Opinion Score (DMOS). We evaluated the 

quantitative performance of the proposed metrics using 

methods introduced by Video Quality Experts Group 

(VQEG) [11]. Those metrics are correlation after nonlinear 

regression, and Spearman rank-order correlation between 

objective and subjective scores, which evaluate the 

prediction accuracy and the prediction monotonicity 

respectively.

Fig. 3 shows the scatter plots of the prediction of 

different mod

rvals. (The final MGBIMs are multiplied by 100 for 

better fitting results.) It is found that the proposed MBVS 

creates fewer outliers as compared to MGBIM and JQS. 

The quantitative performances listed in table 1 also justify 

that MBVS outperforms MGBIM and JQS in both 

prediction accuracy and monotonicity.   

4.    CONCLUSION

thod of evaluating

se
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a nonlinear addition model and incorporate it into block 

discontinuity detections to generate the final BVSM. The 

performance of the proposed BVSM has been demonstrated 

by its application in no-reference image quality assessment. 

It can be also used to codec parameter optimization and 

post-processing tasks in visual communication systems, 

which is of course our future work. 

TABLE I. PERFORMANCE OF IMAGE QUALITY ASSESSMENT MODELS

CC: CORRELATION COEFFICIENTS

correlation after nonlinear 

regression

Spearman rank-order 

correlationModels 
w

CC
High 

bound

Low 

bound
CC

High Lo

bound bound

MGBIM  0.2 40.3303 0.5073 0.6499 329 0.4245 0.584
JQS 0.8964 0.9583 0.8358 0.93270.9341 0.8942

MBVS 0  0.  0  0 0.9219 9568 0.9795 .8471 .9004 .9358
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Figure 3. Scatter plotting results of the predictions of no-reference image 

quality metrics vs. DMOS. 
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