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ABSTRACT

This paper presents a novel approach to particle filtering which
minimizes the total tracking distortion by considering dynamic
variance of proposal density and adaptive number of parti-
cles for each frame. Traditionally, particle filters use fixed
variance of proposal density and fixed number of particles
per frame. We first propose the tracking distortion measure-
ment and then obtain the optimal particle number and mem-
ory size allocation equations under two different constraints.
After that, the optimal particle number allocation equation
is demonstrated in one-dimensional and two-dimensional ob-
ject tracking. Experimental results show the improved per-
formance of our power-aware particle filters in comparison to
traditional particle filters. At last, we give the complete al-
gorithm for real application and show the better performance.
To the best of our knowledge, this paper is the first to consider
the variant numbers of particles for each frame.

1. INTRODUCTION

Over the past few years, particle filters have gained popularity
in object tracking. The number of particles used is an essen-
tial index of the CPU time and tracking power, which are crit-
ical resources. By utilizing power efficiently, we can extend
the lifetime of battery, decrease the interference and make the
whole system more stable.

When we use particle filters for tracking, each sample is
assigned a weight in order to get the posterior density func-
tions. It can be shown that if the number of samples is suffi-
ciently large, the sample approximation of the posterior den-
sity can be made arbitrarily accurate[1]. However, because of
the limited power, only a finite number of particles could be
used in practice.

In traditional particle filters, the variance of proposal den-
sity and the number of particles per frame for are fixed dur-
ing the whole tracking process. These parameters have to be
set by experience before tracking. However, this does not
consider the different characteristics of each frame. In some
frames the objects moves fast, while in others moves slowly.
In the meanwhile, when the power is limited, the number of
particles should be allocated wisely to get the best tracking

quality. Our goal is to minimize the total tracking distortion
while maintaining the same number of particles over a video
sequence as traditional particle filters.

2. TRACKING DISTORTION MEASUREMENT

2.1. Particle Filter Theory

For Bayesian tracking, we assume the states form a first-order
Markov chain. Since the state Xk is hidden and can only
be estimated by the observations Zk, the propagation rule is
given by [2]

p(Xk|Z1:k) ∝ p(Zk|Xk)p(Xk|Z1:k−1), (1)

where

p(Xk|Z1:k−1) =
∫

Xk−1

p(Xk|Xk−1)p(Xk−1|Z1:k−1)dXk−1.

(2)
Let Xi

k denote the ith sample at time k and {Xi, i ∈ N}
be a sample set generated from a proposal density q(X). The
normalized weights π(Xi) are then given by

π(Xi) =
p(Xi)
q(Xi)

, (3)

where π(Xi) =
wi∑n

j=1 wj
. (4)

wi is the weight of ith sample measured by weight function
w(x). The estimate state is then given by the sample mean

X̂k =
n∑

i=1

π(Xi
k)Xi

k. (5)

2.2. Tracking Distortion Measurement

In real tracking, the tracking error of ith particle X̃i is defined
as the difference between the real state vector R and sample
state vector Xi, i.e. X̃i = R − Xi. Since the tracking error
is random, we use the variance of the weighted average er-
ror brought by n particles as a measurement of total tracking
distortion.
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Assume tracking vector has N dimensions and each com-
ponent of error vector is independent from others, it can be
shown that tracking distortion of kth frame Dk is as follows

Dk =
σ2

kεk

nN
k

for large nk/X̃max, (6)

where nk is the number of particles of kth frame.

and σ2
k =

N∏
j=1

σ2
X̃j,k , εk =

N∏
j=1

εX̃j,k , (7)

where σ2
X̃j,k

is the variance of the tracking error of jth com-

ponent at kth frame and

εX̃j =
2X̃j

max

∫ X̃j
max

−X̃j
max

w2(X̃j)β(X̃j)dX̃j

(
∫ X̃j

max

−X̃j
max

w(X̃j)β(X̃j)dX̃j)2
, (8)

where X̃max is the bound of tracking error and β describes
the interval density of the errors of n particles.

Given the fixed σ2
k and εk, the more particles we use,

the small tracking distortion Dk. When n reaches infinity, Dk

converges to zero and the tracking is quite accurate. This con-
sists with the property of Bayesian importance sampling[1],
which verifies our tracking distortion measurement is effec-
tive.

3. OPTIMAL PARTICLE NUMBER / MEMORY
SIZE ALLOCATION EQUATIONS

We derive the optimal allocation equations for video tracking
under two different constraints: (1) Constraint on the average
number of particles n and (2) Constraint on the average mem-
ory size of the particle indexing tables R. For example, if we
have 8 particles, i.e. n=8, then we need 3 indexing bits, i.e.
R=3, where (000) represents particle 1, (001) represents parti-
cle 2, ..., (111) represents particle 8. The relationship between
n and R is R = log2 n.

3.1. Constraint on the average number of particles

Given the desired average number n over M frames, the ques-
tion now is how to allocate the total nM particles among M
frames so that the total distortion is minimized.

Hence, we want to minimize

DT =
1
M

∑
k∈M

σ2
kεk

nN
k

such that
M∑

k=1

nk = nM. (9)

we obtain

nk = n
N+1

√
Nσ2

kεkM∑M
k=1

N+1
√

Nσ2
kεk

, (10)

Rk = R + log2(
N+1

√
Nσ2

kεkM∑M
k=1

N+1
√

Nσ2
kεk

). (11)

The above formulas (10) and (11) imply that when the
total amount of particles is fixed, a frame with larger variance
of error should be given more particles for tracking, while a
frame with a smaller variance of error should be given fewer
particles. This complies with the common sense.

With this particle allocation, the distortion of each frame
is

Dk =
N+1

√
σ2

kεk

nNMNN
N

N+1
(

M∑
k=1

N+1

√
Nσ2

kεk)N . (12)

3.2. Constraint on the average memory size

Under the constraint on the average memory size of the parti-
cle indexing tables, we want to minimize

DT =
1
M

M∑
k=1

σ2
kεk2−NRk such that

M∑
k=1

Rk = RM.

(13)
We obtain

Rk = R +
1
N

log2
σ2

kεk

(
∏M

k=1 σ2
kεk)1/M

, (14)

nk = n(
σ2

kεk

(
∏M

k=1 σ2εk)1/M
)1/N . (15)

The above formulas (14) and (15) imply that a frame with
larger variance of error should be given more memory sizes
of the particle indexing tables, while a frame with a smaller
variance of error should be given fewer memory sizes.

The optimal allocation under constraint R is such that all
the frames have the same tracking distortion, which is,

Dk = (
M∏

k=1

σ2
kεk)1/M2−NR = (

M∏
k=1

σ2
kεk)1/Mn−N . (16)

3.3. Analysis and Discussion

In real tracking, we have the following sampling scheme[1],

Xk = f(Xk−1) + vk, (17)

where f(Xk−1) is the estimation of the mean of the new sam-
ples, and vk has the Gaussian distribution vk ∼ N(0,

∑
G).

According to equation (10), given the tracking dimension
N and the average number of particles used among M frames
n, the allocation of number of particles depends on σk and εk.
It can be shown that the variance of error is also the variance
of proposal density for sampling. As is shown in (8), εk is
difficult to compute. However, we can take it independent
of k when reasonably assuming β(X̃), X̃max and w(X̃) are
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time independent. As a result, the number of particles for kth

frame corresponds only with the variance of proposal density
σ2

k. So, (10) becomes

nk = n
N+1

√
Nσ2

kM∑M
k=1

N+1
√

Nσ2
k

. (18)

We call the variance of proposal density as proposal vari-
ance. In traditional tracking, the proposal variance of all frames
are the same, according to (18), nk = n, which means the
optimal particle allocation is using fixed number of particles
for each frame. However, this does not consider the differ-
ent characteristics of each frame. In some frames the objects
moves fast, while in others moves slowly. The proposal vari-
ance should be bigger for fast moving frames because of the
more movement, and the number of particles should also be
more because of the larger variance.

So, we introduce the dynamic variance of vk, and

Xk ∼ N(f(Xk−1),
∑

G(X̂k+1−X̂k)), (19)

which means the variance of the proposal density is changing
with ∆X̂k = X̂k+1 − X̂k. Then the number of particles will
be allocated according to different proposal variance.

4. EXPERIMENTS AND COMPARISONS

We first show the power of our equation by condensation par-
ticle filter based on off-line learning of ∆X̂k, and then give
the complete algorithm for real application in the next sec-
tion. We compare the tracking results of different algorithms,
which are (a) Fixed proposal variance (choosing smallest vari-
ance of

∑
G(∆X̂k)), Fixed number of particles; (b) Fixed pro-

posal variance (choosing biggest variance of
∑

G(∆X̂k)), Fixed
number of particles; (c) Variant proposal variance, Fixed num-
ber of particles; (d) Variant proposal variance, Variant number
of particles.

4.1. One-dimensional tracking

In this experiment, the average number of particles n = 12.
And the proposal variance σ2 = 0.02 if |∆X̂k| ≤ 0.02;
σ2 = 3 otherwise. The tracking results are given in Fig 1.
The solid line represents the ground truth, while the dotted
line denotes the tracking results. It can be shown that by us-
ing our equation, the tracking quality improves a lot while
utilizing about the same CPU time(obtained by Matlab 6.5,
CPU Pentium M 1.6GHZ). The average SNR in Table 1 is got
by 200 trials.

4.2. Two-dimensional tracking

In two dimensional tracking, the tracking vector is comprised
of the x, y coordinates of the center of the object. This exper-
iment is carried out on 200 synthetic frames with average par-
ticle number n=9. The proposal variance of x, y component

algorithm (a) algorithm (b)

algorithm (c) algorithm (d)

Fig. 1. 1D tracking results of different algorithms.

Table 1. SNR and CPU time in seconds of 1D tracking
Algorithm a b c d

SNR 1.0441 4.3206 4.6872 37.1755
CPU time 0.07 0.07 0.07 0.07

σ2
x = σ2

y = 0.02 if the absolute value of either component

of ∆X̂k ≤ 0.05; σ2
x = σ2

y = 2 otherwise. Tracking results
of different algorithms are shown in Fig 2. The CPU time
of processing one frame of different algorithms is about 0.97
seconds. It can be seen that algorithm (a) (b) (c) completely
lose tracking by frame 25, only (d) tracks well.

5. DYNAMIC PROPOSAL VARIANCE AND
OPTIMAL PARTICLE NUMBER ALLOCATION

ALGORITHM

Now, we demonstrate our dynamic proposal variance and op-
timal particle number allocation algorithm. We process 20
frames at one time. Since the time span of each frame is so
little, we can still consider it real-time processing.

1. Use ABM [3] as a motion estimation to obtain ∆X̂k of
the 20 frames;

2. Distribute the proposal variance
∑

G(∆X̂k);
3. Use the optimal particle number allocation equation

among 20 frames to get the optimal particle number for each
frame nk;

4. Turn back to do particle filter estimation with the op-
timal number of particles. The sampling scheme is Xi

k =
Xi

k−1 + ∆X̂k + vk i = 1, 2, ..., nk;
5. After processing these 20 frames, continue to process
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algorithm (a)

algorithm (b)

algorithm (c)

algorithm (d)

Fig. 2. Frame 14, 25, 112, 200 of 2D tracking results

Table 2. MSE and CPU time per frame in seconds of com-
plete algorithm application

Algorithm a b c d
MSE 3.8224 3.7449 2.5441 1.6222

CPU time 1.5778 1.5758 1.5853 1.5882

another 20 frames till all of the video sequences have been
processed.

We apply our algorithm to a video sequence to see the
improved performance. Besides the variance detector, ABM
motion is also used to make the mean of the estimate accu-
rate, so the improved performance is shown by mean-square
error. The average number of particle n=10. The variance of
x, y component σ2

x = σ2
y = 0.3 if the absolute value of either

component of ∆X̂k ≤ 1; σ2
x = σ2

y = 3 otherwise. The per-
son in the video walks slowly and then suddenly bends and
jumps. The ground truth is obtained by circling the head by
hand frame by frame. Since it is not easy to get the ground
truth of all frames precisely, we only consider the 20 frames
which contains bending and jumping. Fig 3 shows the track-
ing results of different algorithms. Table 2 shows the average
MSE got by 100 trials and CPU time for processing a frame.

6. CONCLUSION

In this paper, we propose to minimize the total tracking dis-
tortion by considering the variant proposal variance and num-
ber of particles per frame at the same time. By using the
optimal particle number allocation equation, we propose a

algorithm (a)

algorithm (b)

algorithm (c)

algorithm (d)

Fig. 3. Frame 142, 154, 158, 159 of tracking results of com-
plete algorithm application.

complete algorithm for real tracking. Our algorithm has the
following advantages: 1. It can minimize the total tracking
distortion while using the same total number of particles as
traditional particle filters; 2. Given the same power, our al-
gorithm achieves the best tracking quality; 3. For the same
tracking quality, our algorithm uses the least CPU time and
least power.
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