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ABSTRACT

Removal of rain streaks in video is a challenging problem due
to the random spatial distribution and fast motion of rain. This
paper presents a new rain removal algorithm that incorporates
both temporal and chromatic properties of rain in video. The
temporal property states that an image pixel is never always
covered by rain throughout the entire video. The chromatic
property states that the changes of R, G, and B values of rain-
affected pixels are approximately the same. By using both
properties, the algorithm can detect and remove rain streaks in
both stationary and dynamic scenes taken by stationary cam-
eras. To handle videos taken by moving cameras, the video
can be stabilized for rain removal, and destabilized to restore
camera motion after rain removal. It can handle both light rain
and heavy rain conditions. Experimental results show that the
algorithm performs better than existing algorithms.

1. INTRODUCTION

Computer vision of indoor situations has been intensively stud-
ied, whereas some outdoor conditions such as rain, snow, and
fog remain as challenging problems for vision systems. The
problem of rain removal in video sequences is similar to video
inpainting [1, 2], which tries to recover occluded objects in
video. But the major obstacles are: (1) the occluders, the rain
drops in this case, are unknown, and (2) the video quality is
seriously degraded by rain. So, it is very difficult to use in-
formation of neighboring pixels of occluded areas, as carried
out by inpainting algorithms [1, 2].

Garg and Nayar classified the weather into two types [3]:
steady weather such as fog and haze, and dynamic weather
such as rain and snow, based on the size of the weather par-
ticles. In steady weather, water droplets or smoke particles
are very small and steadily float in the air. By modeling the
scattering and chromatic effects, Narasimhan and Nayar suc-
cessfully recovered “clear day” scenes from images taken in
bad weather [4].

In dynamic weather, rain drops or snow flakes are ran-
domly distributed in the scene and move all the time. This
makes them hard to detect and causes failures in vision ap-
plications such as tracking and surveillance. Garg and Na-
yar analyzed the physical and photometric properties of rain

drops and proposed a method to detect and remove rain in
video based on these properties [3]. But their photometric
model assumes that all rain drops have the same size and fall
at almost the same velocity relative to the camera. If rain be-
comes heavier or lighter in the video or is distributed over a
wide range of depth, their algorithm might fail to distinguish
rain from other moving objects. Recently, they studied the im-
age formation of rain drops distributed over different depths,
and proposed that by properly setting a camcorder’s param-
eters such as exposure time, aperture, etc., the rain could be
removed when recording the video [5]. However, this method
cannot handle the scenario of heavy rain and the parameters
of consumer camcorders may not be adjustable.

This paper also focuses on the problem of rain removal
in video. A new rain removal algorithm that incorporates
both temporal and chromatic properties of rain in video is pro-
posed. The temporal property states that an image pixel is not
always covered by rain throughout the entire video. The chro-
matic property states that the changes of R, G, and B values
of rain-affected pixels are approximately the same. By us-
ing both properties, the algorithm can detect and remove rain
streaks in both stationary and dynamic scenes taken by sta-
tionary cameras. To handle videos taken by moving cameras,
the video can be stabilized for rain removal, and destabilized
to restore camera motion after rain removal. It can handle
both light rain and heavy rain conditions. Test results show
that the algorithm performs better than existing methods.

2. PROPERTIES OF RAIN

2.1. Temporal Property

In a natural scene, rain can be regarded as a collection of
spherical droplets randomly distributed and moving at a high
speed when they are near the ground. When rain drops are
very far from the camera, their visual effect is very weak and
they appear as fog [5]. So we focus only on rain drops that
are close to the camera.

With a pinhole camera model, the length of rain streaks is
inversely proportional to the depth of rain drops. Normally,
rain streaks span several to tens of pixels in a frame. Due to
the speed of rain drops, the same rain streak does not appear
in two consecutive frames. Moreover, due to the random dis-
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Fig. 1. Temporal property of rain. (a) Image frames of a
video (b) Intensity of a pixel that is sometimes covered by
rain. (c) Intensity histogram of the pixel exhibits two peaks,
one for the background intensity distribution and the other for
the rain intensity distribution.

tribution of rain drops, a pixel is not always covered by rain
throughout the entire video (Fig. 1). Therefore, in a video
of stationary scene taken by a stationary camera, the intensity
histogram of a pixel that is sometimes covered by rain exhibits
two peaks, one for the background intensity distribution and
the other for the rain intensity distribution (Fig. 1(c)). On the
other hand, the intensity histogram of a pixel that is never
covered by rain throughout the entire video exhibits only one
peak.

2.2. Chromatic Property

Garg and Nayar [3] showed that a spherical rain drop refracts
a wide range of light. So the projection of rain drop in the
image is much brighter than its background. Our further in-
vestigation shows that the increase in the intensities of R, G,
and B channels is dependent on the background scene. Be-
cause of the difference in wavelength, blue light has a larger
index of refraction and a wider field of view (FOV) than red
light (Fig. 2). Therefore, a rain drop should refract more blue
light coming from the background. Moreover, the amounts of
change of R, G, and B channels, i.e., ∆R, ∆G, and ∆B, are
related to the actual intensities of R, G, and B channels.

Fig. 2. Fields of Views of R, G, and B lights are different due
to the difference in their refractive indices.

Fig. 3. (a) The regions selected for investigation. (b) The
mean R, G, and B values of the pixels in the selected regions.
(c) The corresponding means and standard deviations of∆R,
∆G, and ∆B.

Fig. 3 illustrates three empirical examples. Fig. 3 (a) high-
lights regions in the video in which pixel colors are exam-
ined. Fig. 3 (b) shows the mean R, G, and B values of the
pixels in the selected regions, and Fig. 3 (c) shows the cor-
responding means and standard deviations of ∆R, ∆G, and
∆B. These examples show that the mean ∆R, ∆G, and ∆B
are indeed different and related to the mean R, G, and B inten-
sities. However, the differences between the mean ∆R, ∆G,
and ∆B are very small because the differences in refraction
indices between the channels are very small. We found em-
pirically that the FOVs of red, green, and blue lights are all
around 165◦, with very small differences between them. So,
for ease of computation, we assume that ∆R, ∆G, and ∆B
are roughly the same for pixels covered by rain drops.

3. RAIN DETECTION AND REMOVAL

3.1. K-means Clustering

From the temporal property discussed in Section 2.1, the in-
tensity histogram of a pixel in a video taken by a stationary
camera exhibits two peaks. K-means clustering algorithm can
be used to identify the two peaks.

For each pixel in the image, its intensity over the entire
video is collected to compute its intensity histogram. Then,
K-means clustering with K = 2 is applied. The two initial
cluster centers wb for background and wr for rain are initial-
ized to be the smallest and the largest intensities of the his-
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togram. The distance d between the intensity I of pixel p and
cluster center w is computed as:

d(Ip, w) = |Ip − w| . (1)

During K-means clustering, pixel p is distributed to the
background cluster if d(Ip, wb) < d(Ip, wr); otherwise, it is
distributed to the rain cluster. After distributing the intensities
of the pixels, the center of cluster C is updated as follows:

w(t + 1) =
1

|C(t)|
∑

Ip∈C(t)

Ip . (2)

K-means clustering is performed until converging to identify
the clusters of background and rain intensities.

The above method is appropriate for videos of stationary
scenes taken by a stationary camera. For videos of station-
ary scenes taken by a moving camera, the method can still be
applied after performing video stabilization [6, 7] to remove
camera motion. Video stabilization is performed by warping
every video frame to align with the first frame. After remov-
ing rain, the stabilized video is destabilized by performing
inverse warping to restore the original camera motion.

3.2. Chromatic Constraint

The K-means clustering method described in Section 3.1 is
appropriate for videos of static scenes taken by a stationary or
moving camera. When the scene contains moving subjects,
the problem becomes more complex and K-means clustering
is not sophisticated enough to detect rain correctly.

The discussion in Section 2.2 shows that the amounts of
change ∆R, ∆G, and ∆B for pixels covered by rain are ap-
proximately the same. When ∆R, ∆G, and ∆B of a pixel
between two successive image frames are significantly dif-
ferent, then the change is more likely due to the motion of
object. Fig. 4 illustrates this observation. In the image frame
in Fig. 4, region 1 contains a stationary background with rain
and region 2 contains a part of a moving object. For region 1,
the ∆R, ∆G, and ∆B of a pixel are approximately the same
between two successive frames. On the other hand, for region
2, the∆R,∆G, and∆B of a pixel are very different. So, false
detection of rain can be reduced by using this chromatic con-
straint. That is, a candidate rain pixel detected by K-means
clustering whose ∆R, ∆G, and ∆B are approximately the
same (i.e., within a predefined threshold) is identified as an
actual rain pixel. Otherwise, it is not an actual rain pixel.

An advantage of this method is that the chromatic con-
straint applies not only to rain in focus but also rain that is
out of focus. The reason is that defocus is a weighted aver-
age of light around a pixel, which does not affect the amounts
of change ∆R, ∆G, and ∆B. The limitation of the chromatic
constraint is that it does not apply very well to gray regions.
Gray regions have roughly the same R, G, and B values, and
slight motion of gray regions results in very small ∆R, ∆G,

Fig. 4. Use of chromatic constraint. (a) Region 1 contains
stationary scene with rain. Region 2 contains a moving object.
(b) False detection of moving object as rain. (c) Reduced false
detection of rain pixels. (d) The mean ∆R, ∆G, and ∆B of
100 randomly selected pixels in region 1 are approximately
the same between two successive frames. (e) The mean ∆R,
∆G, and ∆B of 100 randomly selected pixels in region 2 are
very different between two successive frames.

and ∆B that are approximately the same. So the chromatic
constraint cannot distinguish between rain over gray regions
and slight motion of gray regions.

3.3. Removal of Detected Rain Pixels

Removal of detected rain pixels can be achieved by replacing
the colors of rain pixels with the corresponding background
colors found by K-means clustering. Usually, most rain drops
fall very fast and are out of focus. So rain streaks in the im-
ages are blurred by both motion and defocus. To improve the
rain removal result, we applied dilation and Gaussian blurring
on the detected rain pixels and use them as the alpha channel
α to remove rain streaks by α-blending. That is, the new color
C of a pixel is replaced by the α-blending of its rain-affected
color Cr and background color Cb:

C = αCb + (1 − α)Cr . (3)

4. EXPERIMENTAL RESULTS

In our experiments, we used Sony DCR-TRV15E camera to
take some videos with various raining scenes, including light,
moderate and heavy rain in static and dynamic situations. More-
over, for comparison with the method in [3], we also tested
our algorithm on the movie clips presented in [3]. Fig. 5
shows rain removal in static scene. Almost all the rain streaks
are removed perfectly. The enlarged views show that both rain
streaks in-focus and out-of-focus are removed completely.

Fig. 6 illustrates the detection and removal results of two
frames in dynamic scenes. The results show that our algo-
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Fig. 5. Rain removal in static scene. (a) A frame in the original video. (b) The derained result.

Fig. 6. Detection and removal of rain in dynamic scenes. The video is from the movie “Magnolia” and used by Garg and Nayar
in [3]. (a) Original frames and rain detection results. (b) Our rain removal results. (c) Garg and Nayar’s results.

rithm can effectively distinguish rain drops and moving hu-
man body. Furthermore, comparison with the results of Garg
and Nayar [3] shows that our method detects the background
colors more accurately and gives a rain removed video with
better visual quality. A video demonstration of our experi-
mental results can be downloaded from
http://www.comp.nus.edu.sg/ photo/projects/rain.html.

5. CONCLUSIONS

By careful studying of rain in video, we identified two im-
portant properties that characterize rain. The temporal prop-
erty states that an image pixel is never always covered by rain
throughout the entire video. The chromatic property states
that the changes of R, G, and B values of rain-affected pixels
are approximately the same. By using both properties, a new
rain removal algorithm is developed which can detect and re-
move rain streaks in both stationary and dynamic scenes taken
by stationary cameras. To handle videos taken by moving
cameras, the videos can be stabilized for rain removal, and
destabilized to restore camera motion after rain removal. It
can handle both light rain and heavy rain conditions, as well
as rain in focus and rain that is out of focus. Experimental
results show that the algorithm performs better than existing
methods.
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