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ABSTRACT

Shooting videos with a hand-held camera introduces shaking, which
incontrovertibly reduces video quality. Digital video stabilization
is a process to compensate for camera motion by means of image
processing. In the best case, it not only removes the image motion,
but also reduces image distortion caused by unintentional camera
motion.

In practice, removing solely unwanted jitter cannot be achieved
precisely. Furthermore, the stabilization process itself often intro-
duces some additional distortion in images instead of removing it. In
this paper, various means to automatically evaluate the performance
of the video stabilization process are proposed, based on measuring
the divergence and jitter of the remaining unintentional motion and
blurring using point spread function (PSF). This helps, for example,
in tuning the system parameters for better quality.

1. INTRODUCTION

When a scene is imaged with a hand-held or a vehicle-mounted video
camera, the output is most likely not what was intended; it is rather
a distorted representation of the view. Shaking of the camera leads
to a shaking video sequence, where a lot of unwanted motion ex-
ists. A video stabilization process tries to remove this unintentional,
typically high-frequency motion, known as jitter, and thus ought to
provide more satisfactory video sequences.

Digital video stabilization is typically considered to contain three
successive steps: motion estimation, motion filtering, and motion
compensation. Success in each of these phases affects the quality
of the resulting video. For example, image motion that is caused by
camera motion has to be separated from other motion seen in a view,
and only the unintentional part of this motion should be removed.
Compensating for the motion should not decrease the image quality.
However, typically a decrease in resolution is inevitable, and the in-
terpolation required by rotation, scaling and translation in sub-pixel
accuracy causes additional blurring to the image.

Video stabilization is a common feature in much video process-
ing software and many camcorders today. Assessment of the video
stabilization performance is important in order to tune and compare
different methods. Nevertheless, there is little reported work about
this in a literature. This paper proposes a number of means to auto-
matically assess the performance of the video stabilization process,
and provides the following original contributions:

• A review of existing video stabilization performance assess-
ment methods is given.

• Motion estimation and filtering is assessed by decompos-
ing the remaining image motion into jitter and divergence,
providing more informative objective measurements.

• Blurring is recognized as a problem of digital stabilization,
and a means to assess it via PSF is proposed.

The remainder of this paper is organized as follows. Section
2 discusses the overall performance of video stabilization and is
mainly a review of the existing approaches. Section 3 divides perfor-
mance assessment into sub-problems and proposes new informative
attributes to the measure. Section 4 describes the experiments and
tabulates some example results. Finally, Section 5 concludes the
work.

2. OVERALL VIDEO STABILIZATION PERFORMANCE

One way of comparing stabilization algorithms is to compare the
performance of an application that uses stabilized videos [1, 2]. Ap-
plications range from object tracking to bit rate reduction in video
compression [1, 2, 3]. However, mainly stabilization is performed to
satisfy the human eye, and it is ultimately a subjective opinion as to
how good the resulting quality is. A mean opinion score (MOS) is a
value obtained from a number of subjective opinions (for example,
see [4, 5]). It is clear, that such a slow and expensive arrangement
is often not possible, and thus, MOS is more often seen as a way to
validate automatic criteria [5].

Typically automatic criteria for image quality are based on a
simple pixel-by-pixel comparison between the ground truth image
and the reference image. The most common of such criteria are the
peak signal-to-noise ration (PSNR) and the related mean square er-
ror (MSE) (e.g. in [6, 7]). They are widely used, primarily because
of their mathematical tractability (simple to calculate and differen-
tiable). However, it is well known that they do not correlate well
with perceived quality measurements [5, 8, 7]. Despite the problems,
these pixel-wise approaches are often extended to video quality as-
sessment, simply by comparing still images on a frame-by-frame
basis [5].

Most of the video quality assessment work reported in the liter-
ature is intended for video compression applications, where typical
distortion differs from that in video stabilization, and most of the
criteria proposed for compression applications cannot be utilized for
stabilization. For video stabilization, the most important quality af-
fecting factor is misalignment between the frames.

Studies of the human visual system (HVS) support the intuition
that the amount of displacement does not contain enough informa-
tion alone. Human sensitivity to motion depends on a combination
of motion frequency and amplitude [9], but also on spatial image
frequency, color and intensity, and even the context (see [8, 5, 4]
for details). Some objective image and video quality (of compressed
video) assessment methods do indeed try to incorporate the founda-
tions of HVS [5, 4]. We believe that, for video stabilization, the HVS
is best incorporated by measuring the more informative attributes.
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In the next section, we propose criteria to measure both the
amount and nature of displacement. Another criterion is suggested
that is suitable for measuring the blurring, which is a typical decrease
in image quality with digital video stabilization. An overall perfor-
mance could be then pooled from all the individual measurements,
if necessary.

3. TOWARDS INFORMATIVE OBJECTIVE CRITERIA

Figure 1 summarizes the whole chain of video stabilization assess-
ment using artificial videos, as will be proposed in this chapter. The
left part of the figure sketches the generation of artificial videos and
camera shaking caused distortions, that should be removed. The
middle part shows the main steps of digital video stabilization and
distortions that are reduced, but also some additional ones that might
be introduced. The right part of the figure summarizes how these at-
tributes can be separately assessed using the proposed criteria.

3.1. Motion estimation and filtering

The amount and type (frequency content) of estimated and com-
pensated motion form clearly the most interesting characteristics to
measure when video stabilization performance is being assessed.
To evaluate the quality of the motion estimation and compensation,
some authors show graphically the motion of the original and stabi-
lized videos, either in the time [10, 11, 12] or in frequency domain
[3, 9]. Similarly, only a error component might be shown [13]. A
professional may obtain a great deal of information from these, but
they are suitable only for a subjective evaluation of the results.

3.1.1. Amount of misalignment

Motion estimation and filtering phases can be assessed separately
only if the amount of estimated motion is known. Typically, one
has no access to the estimated parameters, but can only evaluate the
remaining motion from the videos, and these two phases are assessed
simultaneously.

PSNR gives some indication about the misalignment between
two otherwise equal frames. Two PSNR based criteria that indicate
the long and very short term stabilization performance for a fixed
view were proposed for a video surveillance application by [14], and
further utilized by [2].

Misalignment between the frames can, however, also be com-
puted in a more intuitive manner. It should be noted, that typically
a view does not have to be fixed, but there can be intentional cam-
era motion which has to be separated from unwanted motion. While
with synthetic videos the intended motion is unambiguous, for real
data, this is a subjective, task and video specific matter, and some
assumption has to be made. We have used a 1Hz cut-off frequency
as such an assumption, as this seems to be close to what most users
find to be a natural threshold. The deviation between the stabilized
and intended frame position over time (i.e. remaining unintentional
motion) is then measured in terms of translation, rotation and scal-
ing, using the Fourier-Mellin transform. In the following subsection,
we propose a method for decomposing these deviations into more
meaningful measurements.

3.1.2. Interpreting the motion

Especially if there is intended motion in the camera, stabilized video
may follow behind the original video. It can be very stable in nature,
but the average divergence might be large. On the other hand, it

is possible that the stabilized video is averagely very well aligned
with the intended one, but contains a lot of unwanted jitter. Such a
case can produce smaller average displacement, but is more irritating
from a human point of view. There is always a trade-off between
jitter and divergence.

We decompose unintentional motion to a divergence (bias term),
and to jitter. These are obtained with a low/high pass filter with
a certain cut-off frequency c that decomposes the signal. The low
frequency part ef≤c(i) is the expected error during the frame i, and
its square forms the divergence:

Dc =
1

frames

frames�

i=1

{ef≤c(i)}2. (1)

Similarly, the square of the high frequency part forms the jitter:

Jc =
1

frames

frames�

i=1

{ef>c(i)}2. (2)

Misalignment e may indicate the difference between the obtained
and optimal parameter of position along the x- and y-axis, roll angle
or scaling, for example. The measurements of equations 1 and 2
can be alternatively computed from the power spectral density (PSD)
functions.

Jitter attenuation = Jc stabilized/Jc original (3)

indicates the amount of remaining jitter relative to the original jitter,
providing a value that is more independent of the original motion.
It is common in signal processing to give attenuation in decibels.
However, in this paper we have used the direct formula above for the
sake of intuition.

As divergence (eq. 1) is the square of the low frequency compo-
nents, its square root indicates the expected amount of displacement,

E {|e|} ≈
√

D. (4)

3.2. Compensation

With digital video stabilization, it is common that the observed im-
age is a blurred version of the optimal one. A human observer often
finds this blurring irritating, even if images were perfectly aligned.
Thus, a measure to indicate the blurring is needed. While PSNR for
aligned frames is somewhat dependent also on this, we propose a
more accurate method to assess directly the blurring process itself.

In the case of linear blurring, the observed image Iobs is obtained
by convoluting the original image Iorig with a convolution mask h,
Iobs = Iorig ∗h, where h is known as a point spread function (PSF).
It defines how a single bright spot in the original image is observed
in the other.

This kind of image deformation is common with motion blur,
where camera pan and tilt cause the image to move on a sensor dur-
ing the exposure. Linear convolution occurs also in the interpolation
required by image scaling, rotation and translation in sub-pixel accu-
racy. The amount of additional blurring introduced by a stabilization
process itself is affected by an interpolation filter and other imple-
mentation details. For example, if translation, rotation and scaling
are not combined but performed sequentially, the expected amount
of blurring is clearly higher.

To estimate a PSF (solve h from the equation above), we take
sample images containing spatially high frequency components, and
a PSF between two aligned windows is then assessed using the fre-
quency domain utilizing standard signal processing techniques. The
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Fig. 1. Assessing video stabilization performance

Table 1. Motion in test sequences

Run Artificial motion of planar view
Heavy artificial (run) jitter

Window Almost planar + moving objects
Small artificial (still) jitter

Buildings Some parallax motion
Heavy high frequency jitter

Walking Lot of parallax, camera dolly
Heavy medium frequency jitter

normalized peak height of the PSF is taken as a measurement to indi-
cate the preservation of high frequency image components. Before
the PSF is computed, the frames need to be aligned and the effect
of additional interpolation possibly required by this can be removed
by convoluting the resulting PSF with this same interpolation filter.
Without the reference frame, one can get hints of blurring by directly
comparing the amount of high frequency components.

3.3. Other performance criteria

Various interesting issues can be solved by special purpose test ma-
terial. For example, we have measured jitter attenuation to solve
the ranges of compensated motion, amplitude responses of motion
filters, and noise sensitivities of stabilization methods. Also other
special videos, such as videos with high periodic texture content or
videos with an exaggerated amount of blurring and other image de-
formations can be used to distinguish between the different methods.

Some performance criteria are very much application specific.
If stabilization is performed off-line by computer, memory usage,
computational cost or latency are of secondary importance, while
with small hand held devices that stabilize videos on-line, these is-
sues are clearly very important.

4. EXPERIMENTS

We have compared two different video stabilization methods, A and
B, with the algorithms proposed. Fig. 2 shows an example, where
translation about the y-axis of a test sequence ’Run’ is observed. The
upper part of the figure represents the position of the original, ideal,
and two stabilized videos. The middle part shows an error between
the ideal position and the position obtained by stabilization. A bias
is the low frequency part of the error (ef≤c) indicating the expected
error. System B is clearly not aligned with the ideal signal, contain-
ing large divergence. However, the remaining motion is on average
even slightly smoother than for system A. The expected amount of
displacements (on average 2.2 and 16.5 pixels) and jitter (average of
1.2 and 0.8 pixels2), for systems A and B respectively, are decom-
posed from error signals using 1Hz cut-off frequency and are shown
at the bottom of the figure.

Fig. 3 (a) shows an average PSF between the optimal video
and the stabilized video. Video stabilization is made for an artifi-
cially generated shaking video, which contains also some motion
blur. From the PSF function (above) or from its amplitude response
below, one can see that on average a lot of high frequency compo-
nents are lost during the shaking/stabilization process. As this blur-
ring is not evenly distributed among all the frames, in some frames,
it can be very irritating.

As we know that neither of the systems under evaluation tries to
correct the motion blur, it is sufficient to measure the additional blur-
ring that is caused by the stabilization process itself. PSFs between
the shaking and the stabilized videos are not affected by motion blur,
and are shown in Fig. 3 (b) and (c) for systems A and B, respectively.
The peak values, 0.53 and 0.59 indicate that system B is slightly bet-
ter here. However, unlike system B, system A scales the cropped
image to the original size. If the scaling were performed afterward
also on system B, it would require another interpolation and reduce
the value to below the former one. Nevertheless, both of these val-
ues are rather good, being close to the theoretical average 0.56 of
bilinear interpolation. The nearest neighbor interpolation (i.e. full
pixel translation) would produce a peak of height 1 and a bicubic
interpolation of about 0.71.

Four test videos are characterized in Table 1. The first two are
artificial videos. Run is generated by shaking the still image, and
the second (Window) by shaking the stable ground truth video. Also
other distortions, such as motion blur and the effect of a rolling shut-
ter, are simulated. Last two videos (Buildings and Walking) are real
videos, where the ground truth motion is assumed by a low-pass fil-
tering the original motion. The complete results for these are shown
in Table 2.

The results reveal that translational jitter attenuation is about the
same with both methods, and stabilization indeed smoothes the jit-
ter. Rotational motion is compensated only by system A. It is also
capable of following the intended position much more closely than
system B (5 pixels compared to over 20 pixels).

Preservation of high-frequency components, the peak of PSF, is
slightly better for system B. This is mainly due to the fact that it
neither scales nor rotates the image, and thus produces more frames
with full pixel translations only. As a whole, the results seem to favor
system A. Subjective evaluations by the authors conform the results.
All the criteria seem reasonable, while their relative importance de-
pends much on the video content.

5. CONCLUSIONS

The stabilization obtained consists of two kinds of errors in mo-
tion: divergence and jitter. Divergence is related to the expected
error and increases, for example, if there is latency between the
videos, or if the motion compensation filter is not capable of react-
ing quickly enough to the desired motion. Jitter is the remaining high
frequency motion component. In this work, we proposed a measure-
ment method for these two properties from video sequences.

In addition, we proposed a method to estimate the blurring pro-
cess of video stabilization. With a ground truth video, it provides
means of accurately estimating the motion blurring process. The
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Fig. 3. Average PSFs in the top row and their corresponding amplitude responses below, (a) from
optimal to stabilized, (b) From shaking to system A, and (c) From shaking to system B.

Table 2. Comparison of two stabilization methods
Run Window Buildings Walking Total
A B A B A B A B A B

Translational jitter attenuation, c = 1Hz

0.09 0.05 0.5 1.5 0.21 0.51 0.17 0.18 0.12 0.14

Rotational jitter attenuation, c = 1Hz

0.12 1.00 1.35 1.00 0.60 1.00 0.20 1.00 0.15 1.00

Translational expected displacement (pixels), c = 1Hz

2.6 27.9 4.6 13.9 9.0 32.5 4.1 12.2 5.1 21.6

Rotational expected displacement (degrees), c = 1Hz

0.25 0.18 0.04 0.01 0.35 0.02 0.25 0.06 0.22 0.07

Normalized PSF peak height

0.53 0.59 0.47 0.68 0.52 0.77 0.54 0.81 0.52 0.71

same procedure, with a shaking video, can be used for estimating
the additional blurring caused by the stabilization process itself.

Comparison between the different systems or tuning of the pa-
rameters in order to improve the quality of the stabilization method,
require informative and objective criteria to be measured. The pro-
posed intuitive measurements about divergence, jitter, and blurring,
fulfill this requirement.
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