
AN EFFICIENT REFERENCE FRAME STORAGE SCHEME FOR H.264 HDTV DECODER

Peng Zhang, Wen Gao, Di Wu,

Institute of Computing Technology

Chinese Academy of Sciences

Beijing, China

{zhangpeng, wgao, dwu}@jdl.ac.cn

Don Xie

Grandview Semiconductor

Beijing, China

don.xie@grandviewsemi.com

ABSTRACT

This paper proposes an efficient reference frame storage

scheme for HDTV VLSI decoder to reduce external

memory bandwidth requirement. The proposed scheme

consists of the pixel duplication mechanism and the L-C

(luma-chroma) correlated mapping method. Pixel

duplication completely eliminates the possibility of an

access crossing word boundary and therefore substantially

increases the memory bandwidth efficiency. L-C correlated

mapping exploits address relationships between the luma

and chroma reference pixels and largely reduces bank

conflict overhead of memory accesses. The two mechanisms

combined together efficiently improve the bandwidth usage:

up to 47% bandwidth in worst case is saved compared with

the previous schemes, and 25% in average case.

1. INTRODUCTION

ITU-T H.264 / MPEG-4 (Part 10) Advanced Video Coding

(commonly referred as H.264/AVC) [1] is the newest entry

in the series of international video coding standards,

developed jointly by ITU-T VCEG and ISO/IEC MPEG.

For high coding performance, H.264 recommends a series

of efficient coding tools targeting at a variety of applications

from broadcasting to mobile communication, etc.

Comparing with previous video standards, such as MPEG-2

and MPEG-4, H.264 achieves high performance gain by

introducing smaller block size and flexible prediction modes,

etc. But it is accompanied by high computation complexity.

H.264 decoder, especially for HDTV applications, contains

very large amount of data processing, which requires large

amount of data transfer between storage units and

processing units. The throughput of processing units can be

improved by advanced ASIC process and design

methodology exploiting parallelism. But because of the

limitation of physical design, implementations and process

factors, DRAM performance is not improved as fast as

CMOS logic circuit [2]. The gap between them causes

memory bandwidth a bottleneck in overall system

performance. Efficient memory controller design is a key

technique in video decoder designs [3-8].

Memory controller design has been broadly studied in

computer architecture [2] for a long time, and was discussed

in video decoder design from around the mid-1990’s. Bus

scheduling schemes were evaluated on precise simulation

models by Nam Ling [3], etc. With the prevalence of

modern advanced SDRAM, more attention was paid on

utilizing the 3-D feature of prevalent (commercial)

SDRAMs. Methods have been worked out to avoid bank

conflict, the major overhead of SDRAM. Macroblock-based

mapping [4][5][7] can substantially reduce bank conflict

overhead within one macroblock(MB); memory access

scheduling [5][6] reorders memory accesses to insert non-

conflicted accesses between conflicted ones, and memory

mode prediction [8] reduces conflict overhead by adaptively

using auto-precharge. But H.264 requires much more

memory bandwidth than MPEG2, because of long tap

interpolation filter, dispersive reference blocks and

additional mass data that need to store off-chip.

Worst case guarantee is the basic requirement in real

time system design. In this paper, we find that previous

memory mapping schemes can not meet the worst case

requirement of memory bandwidth for HD-1080i and above.

Based on worst case consideration, we propose a pixel

duplication mechanism to effectively avoid word boundary

crossing during reference frame accesses. And we also

propose a correlated luma-chroma mapping scheme to

effectively minimize bank conflicts between luma and

chroma reference pixel access. A substantial reduction of

memory bandwidth is observed by using the two approaches

together. This paper is organized as follow. Memory access

is analyzed in section II. We propose the novel memory

mapping scheme, and address translating formulas in

section III. Section IV lists experimental results and

implementation issues and followed by a brief summary in

section V.

2. MEMEROY ACCESS ANALYSIS

2.1. Memory Access Patterns

This work is supported by the National High Technology
Research and Development Program of China (863 No.
2003AA1Z1290), and Grandview Semiconductor Inc.

3611424403677/06/$20.00 ©2006 IEEE ICME 2006

MB MBMB

16

16

DFDISP MC

Figure 1 Memory access patterns of DISP, DF and MC

There are five memory clients in typical H.264 video

decoder, and their access patterns vary a lot. Input Buffer

stores input coded stream into memory, and VLD reads

them from memory for syntax parsing. Because of the high

compression ratio (10x ~ 100x) of H.264, their memory

bandwidth consumption is relatively small. De-blocking

Filter (DF) stores decoded MBs into memory for display

and reference, and DF accesses are MB aligned two

dimensional block accesses. And DF overhead can be

minimized by mapping pixels of each whole MB into the

same page. Display (DISP) feeds decoded pictures to the

display device, and it accesses memory in one dimensional

raster manner. And its overhead can be reduced by mapping

more horizontal MBs into the same page, and horizontal

neighboring pages into different banks. Though motion

compensation (MC) accesses are also two dimensional

block accesses, they have variable sizes and are not aligned

with the MB boundaries, because motion vectors are

independent with the boundaries.

2.2 H.264 MC Reference Block

H.264 adopts a 6-tap FIR filter for half-pixel interpolation,

and a 2-tap filter for quarter-pixel interpolation. Chroma

fractional pixels are interpolated by bilinear filtering.

a2

a3

a1

a0

a5

a4

i2

i3

i1

i0

i5

i4

a6

a8 b8

a7

c8 d8 e8 f8 g8 h8

i6

i8

i7

4x4 luminance block

4x4 chrominance block

2x2 chrominance block

b2

b3

b1

b0

b5

b4

c2

c3

c1

c0

c5

c4

d2

d3

d1

d0

d5

d4

e2

e3

e1

e0

e5

e4

f2

f3

f1

f0

f5

f4

g2

g3

g1

g0

g4

h2

h3

h1

h0

h5

h4

b6

b7

c6

c7

d6

d7

e6

e7

f6

f7

g6

g7

h6

h7

g5

e2

e3

e1

e0

a4 b4 c4 d4 e4

a0

a1

a3

a2

b0

b1

b3

b2

c0

c1

c3

c2

d0

d1

d3

d2

a0

a1

b0

b1 c1

c0

a2 b2 c2

Figure 2 MC reference block

Fig. 2 shows the reference integer pixels required for

fractional pixel interpolation in the shadowed blocks in the

worst case. To obtain the fractional pixel between c2 and d2,

a2~f2 are required; for the pixel between f2 and g2, d2~i2

are required; and it is similar to the vertical direction.

Finally, 9x9 reference block a0~i8 are required for one 4x4

fractional luma block. Similarly, an 8x8 luma block requires

13x13 integer reference pixels. For chroma, the reference

pixel block is one pixel larger than the referrer block size in

both directions.

2.3 Memory Bandwidth Requirements

SDRAM architecture is introduced in [4][7][8]. Its

bandwidth consumption consists of CAS (Column Access

Strobe) cycles and overhead]. CAS cycles are mainly

determined by decoding procedure of H.264, and overhead

is mainly generated by bank conflicts. Bank conflicts occur

when successive accesses address different rows of the

same bank. To read one MC reference block that crosses

four banks, the overhead is at most 12 cycles for the typical

SDRAMs to open all the conflicted four banks.

Table 1 Cycles consumed by MC per MB

Pattern CAS OH MC Pattern CAS OH MC

One 16x16

Block
162 48 210

Eight 8x4

block
384 384 768

Two 16x8

Block
196 96 292

Eight 4x8

block
576 384 960

Two 8x16

Block
240 96 336

Sixteen 4x4

block
768 768 1536

Four 8x8

Block
288 192 480

Table 1 assumes SDRAM has 128-bit word and four

banks, and pixel depth is 8-bit. It lists the cycles consumed

by MC per MB. For 8x8 blocks, MC CAS cycles are

13x2(cross-word)x2(bi-direction)x4+10x2x4(chroma)=288,

and MC overhead is 12x2x4+12x2x4=192. Summing up DF

and DISP, the total cycle count is 560. Required SDRAM

frequency for HD1080i (30fps) is 1920x1088x30x560/256=

131(MHz). For 4x4 blocks, required frequency is 377MHz.

As a DDR memory system, data rate is as high as 754MHz.

It is very expensive for the external memory chip, and also

very challenging in memory interface design. Large amount

of cycles are consumed by word crossing and chroma

overhead. Our scheme eliminates the two cases, and reduces

the bandwidth cost by half, so a typical 200MHz DDR

memory is competent for the task.

3. PROPOSED STORAGE SCHEME

3.1 Pixel Duplication

MC is the largest bandwidth consumer because its requests

are irregular and dispersive. A typical reference line with 9

pixels (72 bits) may require two 128-bit words, when the 9

bytes cross the word boundary in memory as shown in Fig.

1 (for MC). Two cycles are consumed to read one line,

which reduces bandwidth efficiency by half. In addition, it

is also possible that the two words involved located in

different banks (or pages), more cycles will be needed to

activate the additional bank or page.

362

Figure 3 Redundant word organization

In our mapping scheme, reference pixels are stored with

duplication such that one pixel will appear in two different

words. Memory controller can address the proper word that

contains the whole reference line so as to avoid word

boundary crossing. As shown in Fig. 3(a), each MB line has

two different copies associated with it, corresponding to

left-shifting the original word for the MB line by 8 pixels

and padding the LSB with the pixels in the raster scan order.

The right-most 8 pixels of current word and left-most 8

pixels of the next word are concatenated to form a new

word stored in Y8 MB. Thus, a line of 9 consecutive pixels

(bytes) will be fully contained in Y0 or Y8 word. Which

word to pick is determined by the third bit of the byte

address within a 16-byte word (x3). The last three bits

x2x1x0 are used to indicate the starting pixel position within

the corresponding word. It can be observed that a reference

line less than 10 bytes consumes only one single cycle, in

spite of theirs start positions. 13-pixel lines for 8x8

reference block can be split into two word accesses. In case

of chroma, Cr and Cb pixels are interleaved as shown in

Fig3. b. C0 and C8 (left-shifting by 8 pixel positions) can

fully contain all cases of start position of 5x5 blocks within

one 128-bit (or 16 pixel) word.

3.2 Luma-Chroma Correlated Mapping

In most video coding standards, Luma and chroma blocks

share the same motion vector for motion compensation.

This relationship can be utilized to eliminate bank conflict

between luma and chroma accesses. The additional

overhead is saved for the chroma assuming bank activation

can be hidden into the luma CAS cycles. But there is an

offset between motion vector and reference pixels start

points. Let’s assume the chroma format is 4:2:0, the integer

part of motion vector is (x, y) for luma, and (x/2, y/2) for

chroma; and predicted block size is MxN. Reference block

for luma is the rectangle ranging from (x-2, y-2) to (x+M+2,

y+N+2). For chroma blocks, the rectangle ranges from (x/2,

y/2) to (x/2+M/2, y/2+N/2). If we enlarge the chroma

coordinates by a factor of two, though the two rectangles

are not aligned at start positions, the enlarged chroma one

can be totally contained in the luma one. So only if we map

the correlated luma pixel and its chroma corresponding into

different banks, and access luma block and chroma block

contiguously, bank conflict between luma block and chroma

block can be avoid.

3.3 Combined Mapping Scheme

Y
0

Y
8

Y
0

Y
8

16

16

Y0Y1Y2Y3 Y15

Y8Y9 Y15Y0
*
Y1

*
Y7

*

Word

Page

Bank

B0 B0

B2 B2 B3 B3 B0 B0

B3 B3 B2

C
0

16

8

C
8

8

C
0

C
8

C
0

C
8

C
0

C
8

B1 B0

Cb0Cr0Cb1Cr1Cb2...Cb7Cr7

Cb4Cr4...Cb7Cr7Cb0
*
Cr0

*
...Cb3

*
Cr3

*

B1 B1 B2 B2 B3 B3 B0

B1 B1

B0 B0 B1 B1 B2 B2 B3 B3 B0

B2

B2 B1 B0 B3

B1 B1 B0 B3 B2B0 B3 B2 B1

B3 B3 B2 B1 B0B2 B1 B0

B3

B3

Figure 4 Address mapping scheme

Detailed mapping scheme is shown in Fig. 4. Luma pixels

and chroma pixels are stored in two segments of memory. In

the figure, one white block stands for one MB, and luma

MB is two times larger in vertical direction than the

interleaved chroma one. Y0 and Y8 of the same MB are

mapped into the same page; neighboring MBs which is

mapped into the same bank constitute one page;

neighboring pages are mapped into different banks. A

typical page size is 1024 bytes, one page can just contain

two neighboring luma MBs or four neighboring chroma

MBs, which are mapped into the same bank. For example in

Fig. 4, luma MB0 and MB1 are mapped into bank 0 row 0,

which is indicated by thick rim around the first two MBs

marked by B0. MB2 and MB3 are mapped into bank 1 row

0. And MB 4 also can be mapped into bank0 to ensure

different bank for neighboring pages, but we allocate MB4

into bank3 to increase burst length in DISP accesses. For

chroma, MB0 and MB1 only need half of one page, so MB8

and MB9 are stored in the same page as MB0 and MB1.

As we adopt duplicated mapping, word crossings are

avoided, and meanwhile bank crossings in horizontal

direction are also avoided. At most two banks are accessed

for one luma reference block, so we allocate the remaining

two banks to corresponding chroma block. If luma MB is

mapped into bank N, the corresponding chroma MB is

mapped into bank 3-N, or in another form, bit reversion of

N.

To describe the mapping scheme clearly, equations are

summarized here. In the formulas, {,} is a bit-concatenation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11Y
0

Y
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 ...

x3

0

1

b0 r0 b1 r1 b2 r2 b3 r3 b4 r4 b5 r5 b6 r6 b7 r7 b0 r0 b1 r1 b2 r2 b3 r3C
0

r3C
8 ...

x2

0

1

b4 r4 b5 r5 b6 r6 b7 r7 b0 r0 b1 r1 b2 r2 b3

(a)

(b)

363

operator, is a bit-XOR operator, ! is bit-inverse operator,

1' 0b is one-bit string of zero, and [,] is a bit-selection

operator among a bus. [10 : 0], [10 : 0]x y is the pixel location

of the reference pixels for luma. And [9 : 0], [9 : 0]x y is for

chroma Cb.
 For luma:

{ [6] [4], [5]}

{y[10:4],x[10:7]}

{ [4,3], [3 : 0]}

{1' 0, [2 : 0]}

BankAddr x y x

RowOffset

ColumnAddr x y

ByteAddr b x

 And for chroma:

{!([5] [3]),! [4]}

{y[9:3],x[9:7]}

{ [6], [2], [2 : 0]}

{1' 0, [1: 0],1' 0}

BankAddr x y x

RowOffset

ColumnAddr x x y

ByteAddr b x b

4. EXPERIMENTS AND IMPLEMENTATION

The worst case of memory bandwidth consumption occurs

in B MB, and each block has bi-directional fractional

motion vectors, and reference block has four bank conflicts.

Table 2 Worst cases analysis
Schemes /

block size

MC

CAS

MC

OH

Freq

(MHz)

Schemes /

block size

MC

CAS

MC

OH

Freq

(MHz)

(1) 4x4 768 768 377 (1) 8x8 288 192 131

(2) 4x4 384 768 304 (2) 8x8 144 192 114

(3) 4x4 384 384 211 (3) 8x8 144 96 88

(4) 4x4 384 384 200 (4) 8x8 288 192 136

Four schemes are compared: (1) for the previous

schemes[3][4], (2) for the scheme with only pixel

duplication, and (3) is reference scheme which duplicates

the pixel by four times and each copy offset four pixels, and

(4) is proposed scheme. Required SDRAM frequencies for

real time decoding are list in Tab. 2. For the duplication, DF

needs to store more data into SDRAM, but the additional

CAS cycles are well offset by the savings from the bank-

crossing of the MC reads. Proposed scheme can reduce up

to 47% bandwidth requirement for 4x4 blocks, while

reference scheme (3) performs well for 8x8 blocks. Fig. 5

shows the simulation results on a variety of test streams.

25% bandwidth requirement is saved by proposed scheme.

Integer motion vector and especially zero motion cases will

not benefit from our proposed scheme, but meanwhile these

cases relax the system real time requirement as well.

Figure 5 Average bandwidth consumption

From the formulas in above section, we can see that the

mapping scheme is straight forward and the address

translation complexity is extremely low.

In our scheme, to improve the bandwidth utilization, two

times of memory capacity are needed. We investigate a

typical case for five pictures reference MC in H.264, and six

decoded pictures are stored in memory. The memory size

required for the proposed scheme is about (1920x1088x6)x2

+(1920x544x6)x2=38MB. We only consume an addition

memory of 19MB, but decrease the required memory

interface frequency from 754MHz to 400MHz. Off-chip

memory density is relatively cheap compared with

bandwidth. And design cost on high frequency memory

interface is also reduced much. Data compression can also

be adopted in the decode picture storage to further reduce

the density demand.

5. CONCLUSION

In this paper, we proposed an efficient memory mapping

scheme for H.264 VLSI decoder, which can save up to 47%

of the total external memory bandwidth consumption

compared with the previous schemes. Pixel duplication can

effectively reduce total access time by avoiding accesses

crossing word boundary. L-C correlated mapping can save

the access overhead for the chroma pixels in one MB.

Significant memory bandwidth efficiency is achieved with a

relatively small additional off-chip memory density demand.

6. REFERENCES

[1] Joint Video Team of ITU-T and ISO/IEC JTC 1, “Draft ITU-T

Recommendation and Final Draft International Standard of Joint

Video Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10

AVC)”, July 2004.

[2] J. L. Hennessy and D. A. Partterson, Computer Architecture: A

Quantitative Approach, 3rd ed. San Francisco, CA: Morgan

Kaufmann, 2002.

[3] J. H. Li, N. Ling, “Architecture and Bus-Arbitration Schemes

for MPEG-2 Video Decoder”, IEEE trans. on CSVT, vol. 9, no. 5,

Aug. 1999.

[4] T. Takizawa, J. Tajime, H. Harasaki, “High performance and

cost effective memory architecture for an HDTV decoder LSI”,

Proc. of ICASSP 1999, vol. 4, pp. 1981-1984, Mar. 1999.

[5] T. Takizawa, M. Hirasawa, “An Efficient Memory Arbitration

Algorithm for A Single Chip MPEG-2 AV Decoder”, IEEE trans.

on Consumer Electronics, vol. 47, no. 3, Aug. 2001

[6] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, J. D. Owens,

“Memory Access Scheduling”, Proc. of ISCA 2000, pp. 128-138,

Jun. 2000.

[7] H. Kim, I. C. Park, “High-Performance and Low-Power

Memory-Interface Architecture for Video Processing

Applications”, IEEE trans. on CSVT, vol. 11, no. 11, Nov. 2001.

[8] S. Park, Y. Yi, I. C. Park, “High Performance Memory Mode

Control for HDTV Decoders”, IEEE trans. on Consumer

Electronics, vol. 49, no. 4, Nov. 2003.

364

