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ABSTRACT 

This paper proposes an efficient reference frame storage 

scheme for HDTV VLSI decoder to reduce external 

memory bandwidth requirement. The proposed scheme 

consists of the pixel duplication mechanism and the L-C 

(luma-chroma) correlated mapping method. Pixel 

duplication completely eliminates the possibility of an 

access crossing word boundary and therefore substantially 

increases the memory bandwidth efficiency. L-C correlated 

mapping exploits address relationships between the luma 

and chroma reference pixels and largely reduces bank 

conflict overhead of memory accesses. The two mechanisms 

combined together efficiently improve the bandwidth usage: 

up to 47% bandwidth in worst case is saved compared with 

the previous schemes, and 25% in average case. 

1. INTRODUCTION 

ITU-T H.264 / MPEG-4 (Part 10) Advanced Video Coding 

(commonly referred as H.264/AVC) [1] is the newest entry 

in the series of international video coding standards, 

developed jointly by ITU-T VCEG and ISO/IEC MPEG. 

For high coding performance, H.264 recommends a series 

of efficient coding tools targeting at a variety of applications 

from broadcasting to mobile communication, etc. 

Comparing with previous video standards, such as MPEG-2 

and MPEG-4, H.264 achieves high performance gain by 

introducing smaller block size and flexible prediction modes, 

etc. But it is accompanied by high computation complexity. 

H.264 decoder, especially for HDTV applications, contains 

very large amount of data processing, which requires large 

amount of data transfer between storage units and 

processing units. The throughput of processing units can be 

improved by advanced ASIC process and design 

methodology exploiting parallelism. But because of the 

limitation of physical design, implementations and process 

factors, DRAM performance is not improved as fast as 

CMOS logic circuit [2]. The gap between them causes 

memory bandwidth a bottleneck in overall system 

performance. Efficient memory controller design is a key 

technique in video decoder designs [3-8]. 

Memory controller design has been broadly studied in 

computer architecture [2] for a long time, and was discussed 

in video decoder design from around the mid-1990’s. Bus 

scheduling schemes were evaluated on precise simulation 

models by Nam Ling [3], etc. With the prevalence of 

modern advanced SDRAM, more attention was paid on 

utilizing the 3-D feature of prevalent (commercial) 

SDRAMs. Methods have been worked out to avoid bank 

conflict, the major overhead of SDRAM. Macroblock-based 

mapping [4][5][7] can substantially reduce bank conflict 

overhead within one macroblock(MB); memory access 

scheduling [5][6] reorders memory accesses to insert non-

conflicted accesses between conflicted ones, and memory 

mode prediction [8] reduces conflict overhead by adaptively 

using auto-precharge. But H.264 requires much more 

memory bandwidth than MPEG2, because of long tap 

interpolation filter, dispersive reference blocks and 

additional mass data that need to store off-chip.  

Worst case guarantee is the basic requirement in real 

time system design. In this paper, we find that previous 

memory mapping schemes can not meet the worst case 

requirement of memory bandwidth for HD-1080i and above. 

Based on worst case consideration, we propose a pixel 

duplication mechanism to effectively avoid word boundary 

crossing during reference frame accesses. And we also 

propose a correlated luma-chroma mapping scheme to 

effectively minimize bank conflicts between luma and 

chroma reference pixel access. A substantial reduction of 

memory bandwidth is observed by using the two approaches 

together. This paper is organized as follow. Memory access 

is analyzed in section II. We propose the novel memory 

mapping scheme, and address translating formulas in 

section III. Section IV lists experimental results and 

implementation issues and followed by a brief summary in 

section V. 

2. MEMEROY ACCESS ANALYSIS 

2.1. Memory Access Patterns 
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Figure 1 Memory access patterns of DISP, DF and MC 

There are five memory clients in typical H.264 video 

decoder, and their access patterns vary a lot. Input Buffer 

stores input coded stream into memory, and VLD reads 

them from memory for syntax parsing. Because of the high 

compression ratio (10x ~ 100x) of H.264, their memory 

bandwidth consumption is relatively small. De-blocking 

Filter (DF) stores decoded MBs into memory for display 

and reference, and DF accesses are MB aligned two 

dimensional block accesses. And DF overhead can be 

minimized by mapping pixels of each whole MB into the 

same page. Display (DISP) feeds decoded pictures to the 

display device, and it accesses memory in one dimensional 

raster manner. And its overhead can be reduced by mapping 

more horizontal MBs into the same page, and horizontal 

neighboring pages into different banks. Though motion 

compensation (MC) accesses are also two dimensional 

block accesses, they have variable sizes and are not aligned 

with the MB boundaries, because motion vectors are 

independent with the boundaries. 

2.2 H.264 MC Reference Block 

H.264 adopts a 6-tap FIR filter for half-pixel interpolation, 

and a 2-tap filter for quarter-pixel interpolation. Chroma 

fractional pixels are interpolated by bilinear filtering.  
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Figure 2 MC reference block 

Fig. 2 shows the reference integer pixels required for 

fractional pixel interpolation in the shadowed blocks in the 

worst case. To obtain the fractional pixel between c2 and d2, 

a2~f2 are required; for the pixel between f2 and g2, d2~i2 

are required; and it is similar to the vertical direction. 

Finally, 9x9 reference block a0~i8 are required for one 4x4 

fractional luma block. Similarly, an 8x8 luma block requires 

13x13 integer reference pixels. For chroma, the reference 

pixel block is one pixel larger than the referrer block size in 

both directions. 

2.3 Memory Bandwidth Requirements 

SDRAM architecture is introduced in [4][7][8]. Its 

bandwidth consumption consists of CAS (Column Access 

Strobe) cycles and overhead]. CAS cycles are mainly 

determined by decoding procedure of H.264, and overhead 

is mainly generated by bank conflicts. Bank conflicts occur 

when successive accesses address different rows of the 

same bank. To read one MC reference block that crosses 

four banks, the overhead is at most 12 cycles for the typical 

SDRAMs to open all the conflicted four banks. 

Table 1 Cycles consumed by MC per MB 

Pattern CAS OH MC Pattern CAS OH MC

One 16x16

Block 
162 48 210

Eight 8x4 

block 
384 384 768

Two 16x8

Block 
196 96 292

Eight 4x8 

block 
576 384 960

Two 8x16

Block 
240 96 336

Sixteen 4x4 

block 
768 768 1536

Four 8x8 

Block 
288 192 480  

Table 1 assumes SDRAM has 128-bit word and four 

banks, and pixel depth is 8-bit. It lists the cycles consumed 

by MC per MB. For 8x8 blocks, MC CAS cycles are 

13x2(cross-word)x2(bi-direction)x4+10x2x4(chroma)=288, 

and MC overhead is 12x2x4+12x2x4=192. Summing up DF 

and DISP, the total cycle count is 560. Required SDRAM 

frequency for HD1080i (30fps) is 1920x1088x30x560/256= 

131(MHz). For 4x4 blocks, required frequency is 377MHz. 

As a DDR memory system, data rate is as high as 754MHz. 

It is very expensive for the external memory chip, and also 

very challenging in memory interface design. Large amount 

of cycles are consumed by word crossing and chroma 

overhead. Our scheme eliminates the two cases, and reduces 

the bandwidth cost by half, so a typical 200MHz DDR 

memory is competent for the task. 

3. PROPOSED STORAGE SCHEME 

3.1 Pixel Duplication 

MC is the largest bandwidth consumer because its requests 

are irregular and dispersive. A typical reference line with 9 

pixels (72 bits) may require two 128-bit words, when the 9 

bytes cross the word boundary in memory as shown in Fig. 

1 (for MC). Two cycles are consumed to read one line, 

which reduces bandwidth efficiency by half. In addition, it 

is also possible that the two words involved located in 

different banks (or pages), more cycles will be needed to 

activate the additional bank or page. 
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Figure 3 Redundant word organization 

In our mapping scheme, reference pixels are stored with 

duplication such that one pixel will appear in two different 

words. Memory controller can address the proper word that 

contains the whole reference line so as to avoid word 

boundary crossing. As shown in Fig. 3(a), each MB line has 

two different copies associated with it, corresponding to 

left-shifting the original word for the MB line by 8 pixels 

and padding the LSB with the pixels in the raster scan order. 

The right-most 8 pixels of current word and left-most 8 

pixels of the next word are concatenated to form a new 

word stored in Y8 MB. Thus, a line of 9 consecutive pixels 

(bytes) will be fully contained in Y0 or Y8 word. Which 

word to pick is determined by the third bit of the byte 

address within a 16-byte word (x3). The last three bits 

x2x1x0 are used to indicate the starting pixel position within 

the corresponding word. It can be observed that a reference 

line less than 10 bytes consumes only one single cycle, in 

spite of theirs start positions. 13-pixel lines for 8x8 

reference block can be split into two word accesses. In case 

of chroma, Cr and Cb pixels are interleaved as shown in 

Fig3. b. C0 and C8 (left-shifting by 8 pixel positions) can 

fully contain all cases of start position of 5x5 blocks within 

one 128-bit (or 16 pixel) word. 

3.2 Luma-Chroma Correlated Mapping 

In most video coding standards, Luma and chroma blocks 

share the same motion vector for motion compensation. 

This relationship can be utilized to eliminate bank conflict 

between luma and chroma accesses. The additional 

overhead is saved for the chroma assuming bank activation 

can be hidden into the luma CAS cycles. But there is an 

offset between motion vector and reference pixels start 

points. Let’s assume the chroma format is 4:2:0, the integer 

part of motion vector is (x, y) for luma, and (x/2, y/2) for 

chroma; and predicted block size is MxN. Reference block 

for luma is the rectangle ranging from (x-2, y-2) to (x+M+2, 

y+N+2). For chroma blocks, the rectangle ranges from (x/2, 

y/2) to (x/2+M/2, y/2+N/2). If we enlarge the chroma 

coordinates by a factor of two, though the two rectangles 

are not aligned at start positions, the enlarged chroma one 

can be totally contained in the luma one. So only if we map 

the correlated luma pixel and its chroma corresponding into 

different banks, and access luma block and chroma block 

contiguously, bank conflict between luma block and chroma 

block can be avoid. 

3.3 Combined Mapping Scheme 

Y
0

Y
8

Y
0

Y
8

16

16

Y0Y1Y2Y3  Y15

Y8Y9 Y15Y0
*
Y1

*
Y7

*

Word

Page

Bank

B0 B0

B2 B2 B3 B3 B0 B0

B3 B3 B2

C
0

16

8

C
8

8

C
0

C
8

C
0

C
8

C
0

C
8

B1 B0

Cb0Cr0Cb1Cr1Cb2...Cb7Cr7

Cb4Cr4...Cb7Cr7Cb0
*
Cr0

*
...Cb3

*
Cr3

*

B1 B1 B2 B2 B3 B3 B0

B1 B1

B0 B0 B1 B1 B2 B2 B3 B3 B0

B2

B2 B1 B0 B3

B1 B1 B0 B3 B2B0 B3 B2 B1

B3 B3 B2 B1 B0B2 B1 B0

B3

B3

Figure 4 Address mapping scheme 

Detailed mapping scheme is shown in Fig. 4.  Luma pixels 

and chroma pixels are stored in two segments of memory. In 

the figure, one white block stands for one MB, and luma 

MB is two times larger in vertical direction than the 

interleaved chroma one. Y0 and Y8 of the same MB are 

mapped into the same page; neighboring MBs which is 

mapped into the same bank constitute one page; 

neighboring pages are mapped into different banks. A 

typical page size is 1024 bytes, one page can just contain 

two neighboring luma MBs or four neighboring chroma 

MBs, which are mapped into the same bank. For example in 

Fig. 4, luma MB0 and MB1 are mapped into bank 0 row 0, 

which is indicated by thick rim around the first two MBs 

marked by B0. MB2 and MB3 are mapped into bank 1 row 

0. And MB 4 also can be mapped into bank0 to ensure 

different bank for neighboring pages, but we allocate MB4 

into bank3 to increase burst length in DISP accesses. For 

chroma, MB0 and MB1 only need half of one page, so MB8 

and MB9 are stored in the same page as MB0 and MB1. 

As we adopt duplicated mapping, word crossings are 

avoided, and meanwhile bank crossings in horizontal 

direction are also avoided. At most two banks are accessed 

for one luma reference block, so we allocate the remaining 

two banks to corresponding chroma block. If luma MB is 

mapped into bank N, the corresponding chroma MB is 

mapped into bank 3-N, or in another form, bit reversion of 

N.

To describe the mapping scheme clearly, equations are 

summarized here. In the formulas, {,}  is a bit-concatenation 
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operator,  is a bit-XOR operator,  !  is bit-inverse operator,  

1' 0b  is one-bit string of zero, and [,] is a bit-selection 

operator among a bus. [10 : 0], [10 : 0]x y  is the pixel location 

of the reference pixels for luma. And [9 : 0], [9 : 0]x y  is for 

chroma Cb. 
  For luma:  

{ [6] [4], [5]}

{y[10:4],x[10:7]}

{ [4,3], [3 : 0]}

{1' 0, [2 : 0]}

BankAddr x y x

RowOffset

ColumnAddr x y

ByteAddr b x

  And for chroma:  

{!( [5] [3]),! [4]}

{y[9:3],x[9:7]}

{ [6], [2], [2 : 0]}

{1' 0, [1: 0],1' 0}

BankAddr x y x

RowOffset

ColumnAddr x x y

ByteAddr b x b

4. EXPERIMENTS AND IMPLEMENTATION 

The worst case of memory bandwidth consumption occurs 

in B MB, and each block has bi-directional fractional 

motion vectors, and reference block has four bank conflicts. 

Table 2 Worst cases analysis 
Schemes / 

block size 

MC

CAS 

MC 

OH

Freq

(MHz) 

Schemes / 

block size 

MC 

CAS 

MC

OH

Freq

(MHz)

(1) 4x4 768 768 377 (1) 8x8 288 192 131

(2) 4x4 384 768 304 (2) 8x8 144 192 114

(3) 4x4 384 384 211 (3) 8x8 144 96 88 

(4) 4x4 384 384 200 (4) 8x8 288 192 136

Four schemes are compared: (1) for the previous 

schemes[3][4], (2) for the scheme with only pixel 

duplication, and (3) is reference scheme which duplicates 

the pixel by four times and each copy offset four pixels, and 

(4) is proposed scheme. Required SDRAM frequencies for 

real time decoding are list in Tab. 2. For the duplication, DF 

needs to store more data into SDRAM, but the additional 

CAS cycles are well offset by the savings from the bank-

crossing of the MC reads. Proposed scheme can reduce up 

to 47% bandwidth requirement for 4x4 blocks, while 

reference scheme (3) performs well for 8x8 blocks. Fig. 5 

shows the simulation results on a variety of test streams. 

25% bandwidth requirement is saved by proposed scheme. 

Integer motion vector and especially zero motion cases will 

not benefit from our proposed scheme, but meanwhile these 

cases relax the system real time requirement as well. 

Figure 5 Average bandwidth consumption 

From the formulas in above section, we can see that the 

mapping scheme is straight forward and the address 

translation complexity is extremely low.  

In our scheme, to improve the bandwidth utilization, two 

times of memory capacity are needed. We investigate a 

typical case for five pictures reference MC in H.264, and six 

decoded pictures are stored in memory. The memory size 

required for the proposed scheme is about (1920x1088x6)x2 

+(1920x544x6)x2=38MB. We only consume an addition 

memory of 19MB, but decrease the required memory 

interface frequency from 754MHz to 400MHz. Off-chip 

memory density is relatively cheap compared with 

bandwidth. And design cost on high frequency memory 

interface is also reduced much. Data compression can also 

be adopted in the decode picture storage to further reduce 

the density demand. 

5. CONCLUSION 

In this paper, we proposed an efficient memory mapping 

scheme for H.264 VLSI decoder, which can save up to 47% 

of the total external memory bandwidth consumption 

compared with the previous schemes. Pixel duplication can 

effectively reduce total access time by avoiding accesses 

crossing word boundary. L-C correlated mapping can save 

the access overhead for the chroma pixels in one MB. 

Significant memory bandwidth efficiency is achieved with a 

relatively small additional off-chip memory density demand. 
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