
A HIGH THROUGHPUT VLSI ARCHITECTURE DESIGN FOR H.264 CONTEXT-BASED

ADAPTIVE BINARY ARITHMETIC DECODING WITH LOOK AHEAD PARSING

Yao-Chang Yang
1
, Chien-Chang Lin

1
, Hsui-Cheng Chang

1
, Ching-Lung Su2, and Jiun-In Guo

1

1Dept. of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan, ROC
2Department of Electronics Engineering, National Yunlin University of Science Technology, Yun-Lin 640, Taiwan, ROC

e-mail: {yangyc, lcc, chc92, jiguo}@cs.ccu.edu.tw1, kevinsu@yuntech.edu.tw2

ABSTRACT

In this paper we present a high throughput VLSI architecture

design for Context-based Adaptive Binary Arithmetic Decoding

(CABAD) in MPEG-4 AVC/H.264. To speed-up the inherent

sequential operations in CABAD, we break down the processing

bottleneck by proposing a look-ahead codeword parsing technique

on the segmenting context tables with cache registers, which

averagely reduces up to 53% of cycle count. Based on a 0.18 m

CMOS technology, the proposed design outperforms the existing

design by both reducing 40% of hardware cost and achieving about

1.6 times data throughput at the same time.

1. INTRODUCTION

ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T

Video Coding Experts Group (VCEG) jointly develop the latest

video standard, H.264/AVC [1] for next generation multimedia

coding applications. Compared with the previous MPEG standards,

H.264 provides over two times higher compression ratio with

higher video coding quality. However, the computational

complexity of H.264 video coding is much higher than that in the

previous MPEG standards, which induces the necessity of

achieving real-time processing of H.264 video coding through

dedicated hardware design.

There are two techniques adopted in H.264 entropy coding. One is

Context-based Adaptive Variable Length Coding (CAVLC) for

baseline profile video. The other is Context-based Adaptive Binary

Arithmetic Coding (CABAC) for main profile video. Compared to

the CAVLC, adopting CABAC can save about 9% to 14% of bit-

rates at the cost of higher computational complexity [2].

The inherent sequential data dependency in the CABAD severely

limits the data throughput rate, which imposes difficulties in

achieving real-time H.264 video decoding on the HD format

videos like HD1080@30fps. It normally takes 3 clock cycles to

decode one-bin of CABAD codeword, which has imposed a severe

processing bottleneck in the existing CABAD design [3].

According to our observation, the data dependency mentioned

above can be first released by adopting the design concept of

pipelining in decoding CABAD codeword, which can improve the

data throughput rate to be decoding one-bin of CABAD codeword

in two cycles. In addition, we can further improve the data

throughput by partitioning the large context table into multiple

segmented context tables and adding cache registers for storing

temporary context values. With this technique, we can achieve the

data throughput of decoding one-bin CABAD codeword within

less than two cycles.

Although there is over two times of speed-up in decoding CABAD

codeword by adopting the techniques mentioned above, it is still

possible to improve the data throughput. According to our analysis,

the current data dependency in the CABAD exists in renormalizing

the probability model of the CABAD coded bit-stream after

decoding each bin of CABAD codeword. However, the re-

normalization is not taken place in some cases. By exploiting this

fact, we propose a look-ahead codeword parsing scheme to detect

if the re-normalization on the probability model occurs in CABAD.

If the look-ahead conditions fit, we can decode two bits of

CABAD codeword in each cycle, which furthermore releases the

processing bottleneck of CABAD. On the other hand, if the look-

ahead condition fails, it still takes one cycle to decode one-bit of

CABAD codeword without additional overhead.

Based on these design techniques, we have designed the proposed

high throughput CABAC decoder for H.264. The proposed design

can operate at 120MHz at the cost of about 37K gates with 4,032

bits of memory (or about 83K gates in total). This performance can

meet the real-time processing requirement in H.264 video

decoding on HD1080 video. As compared to the existing design

[3], the proposed design both owns 40% reduction of hardware

cost and possesses over 1.6 times data throughput improvement.

The rest of this paper is organized as follows. In Section II, we

introduce the CABAD flow. Then, we present the proposed design

and the adopted design techniques in Section III. In Section IV, we

show the experimental results and performance comparison of the

proposed design with others. Finally, we conclude this paper in

Section V.

2. CABAD FLOW
The CABAD flow consists of three fundamental parts. One is

context and probability modeling. Another is binary arithmetic

decoding. The other is binarization. The H.264 standard defines an

extensive set of context information associated with syntax

elements (SEs). In the first step, context modeling is to select the

context index according to which SE is to be decoded and referring

syntax information from top, left, or the current macroblock (MB).

Second, the CABAD is to decode one bin and renormalize

probability model. At last, binarization step is in charge of

checking if the successive decoded bin (or bit) is in bin string. If

not, the decoder will keep on decoding next bin. If yes, the decoder

is prepared to decode the first bin of next SE.

Fig. 1 shows the data flow of CABAD. At first, CABAD needs to

re-initialize both the context tables in the beginning of each slice

and probability model from bit-stream. Then the SEs of each MB

can be decoded one by one.

3571424403677/06/$20.00 ©2006 IEEE ICME 2006

Initialize Context Table

Initialize Probability Model

from bitstream

Get neighbor

syntax information

Parsing Syntax Element

+

Bin idx Syntax base idx

offset

Probability

Model

Set bin idx = 0

Context Table

Decode bin

Renormalized
from bitstream

Binarization

SE = mb_type && I_PCM

bin idx ++

bin

Other SEs finished

Syntax Element not finished

Decode next Syntax Elements

Decode next bin in this Syntax Element

Context Modeling

Binary Arithmetic

Decoding

SE = end_of_slice_flag = 1

Fig. 1: Data flow in CABAD

Decode bin

Decode Decision Decode Bypass Decode Terminate

Context Value

(state, MPS)
Probability Model

bin

rangeLPS Table

transIdxLPS Table

transIdxMPS Table

Fig. 2: Decoding engines of Decode bin

The Decode bin stage consists of three decoding engines, including

decode decision, decode bypass, and decode terminate. Only one

of these engines works at a time to generate a bin value. Besides

the context tables, the H.264/AVC standard also defines three

other tables for decode decision to update the probability model,

including rangeLPS table, transIdxLPS table, and transIdxMPS

table. The concept of Decode bin is shown in Fig. 2.

3. PROPOSED CABAD DESIGN

The proposed VLSI architecture for H.264 CABAC decoder is

shown in Fig. 3. We partition this architecture into three parts,

where each part respectively handles the decoding operations on

different levels including MB information, slice data and MB layer

level, and residual data level. In the following, the proposed design

is described in more details.

Bit-stream

System

Controller

Syntax Packer

Internal
Bus Interface

IQ/IT

CABAC

Decoding Core

Left MB

Syntax Info

Top MB

Syntax Info

MB Syntax Info
Memory (SRAM)

Parser

Bit-stram

Manager

IDS

MB Info

Level

Slice Data &

MB Layer Level

Residual Data

Level

Fig. 3: Architecture of the proposed CABAD design

reduced_mb_type

(0~7)

 3 bits to present

mb_type

(0~48)

 6 bits to present

0: DIRECT

1: I4MB

2: I16MB
3: IPCM

4: MB16x16

5: MB16x8

6: MB8x16

7: MB8x8

classify reduce

50% reduction

Fig. 4: Proposed syntax element reduction

reduced_mb_type reduced_sub_mb_type reduced_cbp other info ...

mb_typeunused

sub_mb_typeunused

cbpunused

pack the reduced information

addr 1

addr 2

addr 3

addr 1

Fig. 5: Proposed syntax information packing

3.1. MB information Level

The CABAD process needs to refer the left and the top MB syntax

information to decide the context index when decoding a SE’s bin.

We propose an efficient method to reduce the required memory

size, bandwidth, and access times for storing SEs of neighboring

MBs. According to the referring characteristics, we find that it is

not necessary to use the complete syntax information. Let us take

the mb_type information as an example. The range of mb_type is

from 0 to 48 specified in standard. When referring syntax element,

as mb_type of I slice, we just need to know it is Intra16x16 instead

of what kind of Intra16x16, such as I_16x16_0_0_0, or

I16x16_1_0_0, or etc. So, we can classify it into 8 parts as shown

in Fig. 4 for both reducing 50% of line buffer for storing the

information and simplify the hardware complexity (e.g. using a 3-

bit comparator instead of a 6-bit one).

Besides, we pack some syntax information together and then

access them through internal bus instead of accessing them

individually, as shown in Fig. 5. Thus, we can reduce 68% of

memory bandwidth in average.

3.2. Slice Data and MB Layer Level

358

This is the major part in the proposed CABAC decoder. The Parser

primarily plays three roles, including accessing the MB

information, controlling the entire decoding, and decoding the slice

headers. The CABAD core is the most important part in the

proposed design. We propose four techniques to improve the

performance of the CABAD. They are adopting pipeline

scheduling, using segmented context tables, adding cache registers,

and doing look-ahead codeword parsing.

Fig. 6 shows the original CABAD process. It takes three cycles to

generate a bin, which imposes a critical processing bottleneck.

Thus, a pipeline scheduling on the CABAD is adopted, as shown

in Fig. 7, which reduces 33% of cycle count at least in the CABAD

compared with that in Fig. 6.

Decode

bit

read context decode write context

Time

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Decode

bit

read context decode write context

Memory Read

Memory Write

Fig 6: Original decoding process

Decode

bit

TimeCycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Decode

bit

Decode

bit

Decode

bit

33% reduction

44% reduction

50% reduction

Fig. 7: Proposed pipelined decoding process

Decode

bit

Time
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Decode

bit

prev_intra4x4_pred_mode_flag rem_intra4x4_pred_mode

Decode
bit

Time
Cycle 1 Cycle 2 Cycle 3 Cycle 4~32 Cycle 33 Cycle 34

loop for 16 times, finished at cycle 96

cache1 cache2

cache1

Decode
bit

cache2

loop for rest 15 times

Decode
bit

cache2

cache1 cache2

1 2

1 2 2

Memory Read

Memory Write

1 2

Fig. 8: Cycle-count reduction by combining the pipeline

scheduling and cache registers

When an internal loop occurs, there might be a succession of

context memory access using the same couple context values.

Therefore, we exploit the design concept of cache memory to add

cache registers for storing the context values and write back to

context memory only once at the end of the internal loop. For

example, there is an internal loop occurs when decoding intra4x4

mode. The CABAC decoder needs to decode

prev_intra4x4_pred_mode_flag and rem_intra4x4_pred_mode for

sixteen times continuously. Fig. 8 shows the combination of the

pipeline scheduling technique and cache registers. When adding

cache registers, we can reduce the memory access times into once.

Using this technique, we can achieve the data throughput rate of

decoding 1-bit per cycle, which reduces about 65% of cycle count

in as compared with that in Fig. 7.

Probability
Model

rLPS_table

Context

Model

MPS

LPS

M
U

X

Bitstream manager

Update context information

Renormalize
probability model

Bin
-

Fig. 9: Original decoding decision flow

Probability

Model

rLPS_table

Context
Model

-
MPS

LPS

M
U

X

Bitstream manager

Update

Renormalize

Bin 1

-

rLPS_table

MPS

Bin 2

M
U

X

LAPD

M

U
X

Fig. 10: Proposed decision flow with look-ahead codeword parsing

Moreover, the data throughput of CABAD can be further improved

by exploiting the characteristics in re-normalizing the probability

model. According to our analysis, the current data dependency

exists in re-normalizing the probability model of the CABAD

coded bit-stream after decoding each bin. However, the re-

normalization is not taken place in some cases. By exploiting this

fact, we propose a look-ahead codeword parsing scheme to detect

if the re-normalization on the probability model occurs in CABAD.

If the look-ahead condition fits, we can decode two bins in each

cycle, which furthermore releases the processing bottleneck of

CABAD. On the other hand, if the look-ahead condition fails, it

still takes one cycle to decode one-bit of CABAD codeword

without additional overhead. Fig. 9 shows the original decoding

decision flow and Fig. 10 shows the proposed decoding decision

flow with look-ahead codeword parsing scheme. The Look Ahead

Parsing Detection (LAPD), as Fig. 10 shows, is used to detect if

codiRange>=256 (i.e. without re-normalizing probability model

and shifting bitstream) and codiRange>=codiOffset (i.e. passing

through MPS stage). If these two conditions match, we can

generate the second bin. The overhead of the proposed look-ahead

codeword parsing includes two look-up tables, one adder, and one

multiplexer for purpose of providing the capability of decoding

two bits in one cycle.

Since we might be able to decode two bins per cycle, in order to

match the feeding throughput, we need a more efficient way to

access memory to load multiple context value cycle by cycle.

Therefore, we partition one context table into multiple segmented

context memories. Thus, combining the segmented context

359

memories with cache registers, we can read and write memory in a

more flexible way, as shown in Fig. 11.

Time
Cycle 1 Cycle 2 Cycle 3 Cycle 4

Decode

bit1 cache1

cache2

cache1

cache2

1

2

1

2
Decode

bit2

Decode

bit1 cache3

cache4

cache3

cache4

3

4

3

4
Decode

bit2

Memory-N Read

Memory-N Write

N

N

Fig. 11: Optimized decoding process

Fig. 12 shows the architecture of the proposed CABAD core. By

exploiting all the proposed design techniques, we can averagely

reduce about 53% of cycle count in the CABAD as compared to

the original one.

Context

ROM

Segmented

Context SRAM

Controller

caches

Probability

Model

Decode bin

LAPD

bit1bit2
Shift_bits

Bitstream

manager

Fig. 12: Architecture of the proposed CABAD core

3.3. Residual Data Level

The residual data decoded by the proposed CABAC decoder are

sent to Interleaved Double Stack (IDS) [4], which is proposed in

our previous work, located at the right part of the proposed design

in Fig 3. The IDS is used to be in charge of reordering the residual

data decoded from the proposed CABAC decoder. It can support

different scan orders like zig-zag scan order for frame coding and

field scan orders for filed coding.

4. PERFROMANCE COMPARSION

In this section, we discuss about the performance evaluation and

compare the proposed design with the existing one. We have

implemented the proposed design in Verilog HDL with nLint

checking [5], simulated with ModelSim and ncVerilog, and

synthesized it using Synopsys DC tool according to a TSMC

0.18 m CMOS technology. The proposed design operates at

120MHz with the cost of 83,157 gates in total, including IDS and

all the context memories. We have integrated the proposed design

in a H.264 BP/MP video decoder system for system and FPGA

verification, which passes over hundred testing sequences

including the conformance sequences from JVT [6] and those

generated by H.264 reference software encoder JM93 [7].

Table 1 shows the comparison results of the proposed design with

the existing one [3]. According to our system verification, it

respectively takes about 463 cycles, 308 cycles and 254 cycles to

decode one MB in I slices (with qp=36), P and B slice (with

qp=26), which achieves the real-time CABAD on HD1080i videos.

This performance is better than the design [3] in terms of about 1.6

times data throughput for the H.264 IBBP configuration sequences.

Table 1. Comparison of the proposed design with the design [3]

 ISCAS2005 [3] Proposed design

Technology TSMC 0.13 m TSMC 0.18 m

Gate count 138,226 83,157

Max speed 200 MHz 120 MHz

Target spec. HD720@30fps HD1080i@30fps

I slice: 1,661 462.44 (qp=36)

P slice: 576 307.73 (qp=26) Average cycles/MB

B slice: 328 253.56 (qp=26)

5. CONCLUSION

In this paper we have proposed a high throughput VLSI

architecture design for H.264 CABAD. By exploiting four design

techniques such as adopting pipeline scheduling, using segmented

context tables, adding cache registers, and doing look-ahead

codeword parsing, we have successfully broken down the

processing bottleneck of CABAC decoding to averagely reduce up

to 53% of cycle count in comparison with non-improved one.

Based on a 0.18 m CMOS technology, the proposed design

outperforms the existing design [3] by both reducing 40% of

hardware cost and achieving over 1.6 times data throughput at the

same time.

6. REFERENCE

[1] Joint Video Team (JVT) of ISO/IEC MPEG&ITU-T VCEG,

“ISO/IEC 14496-10”, 2003.

[2] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based

Adaptive Binary Arithmetic Coding in the H.264/AVC Video

Compression Standard,” IEEE Trans. Circuits Syst. Video

Technol., vol. 13, pp. 560-576, July 2003.

[3] J. W. Chen, C. R. Chang, and Y. L. Lin, “ A Hardware

Accelerator for Context-Based Adaptive Binary Arithmetic

Decoding in H.264/AVC,“Proc. ISCAS, pp.4525 – 4528, 23-

26 May 2005.

[4] H. C Chang, C. C. Lin, and J. I. Guo; “A Novel Low-Cost

High-Performance VLSI Architecture for MPEG-4

AVC/H.264 CAVLC Decoding,” Proc. ISCAS, pp.6110 –

6113, 23-26 May 2005.

[5] Michael Keating and Pierre Bricaud, “Reuse Methodology

Manual” 3rd edition by Kluwer Academic Publishers, 2002.

[6] http://ftp3.itu.ch/av-arch/jvt-site/draft_conformance/

[7] Joint Video Team (JVT) reference software JM9.3

360

