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ABSTRACT

This paper presents novel tensor-based object trajectory mod-
elling techniques for simultaneous representation of multiple
objects motion trajectories in a content based indexing and
retrieval framework. Three different tensor decomposition
techniques-PARAFAC, HOSVD and Multiple-SVD-are ex-
plored to achieve this goal with the aim of using a minimum
set of coefficients and data-dependant bases. These tensor de-
compositions have been applied to represent full as well as
segmented trajectories. Our simulation results show that the
PARAFAC-based representation provides higher compression
ratio, superior precision-recall metrics, and smaller query pro-
cessing time compared to the other tensor-based approaches.

1. INTRODUCTION

In most of the existing content-based video indexing and re-
trieval systems, object motion (trajectory) stands out as the
best cue for describing the rich dynamic content of video clip
[1][2]. Among the systems that use object motion, majority of
them represent each object trajectory individually, thus limit-
ing the system to only single object motion based queries. At
times observing the trajectories of multiple interacting objects
provides better clue to the underlying activity which other-
wise may not be apparent from observing the motions of the
same objects individually. However, the problem of simul-
taneously representing multiple object trajectories in a single
framework is hard.

In this paper we present a novel and pioneering approach
to deal with multiple object trajectories. In the proposed ap-
proach multiple object trajectories are mathematically repre-
sented as tensors. Different tensor decomposition techniques,
namely PARAFAC, HOSVD and Multiple-SVD, are investi-
gated to analyze, index and query the multiple objects trajec-
tory data. In this presentation, we introduce a new mathe-
matical framework based on tensor analysis for indexing and
retrieval of simultaneous multiple object trajectories in video
sequences.

2. TENSOR-BASED INDEXING AND RETRIEVAL

A tensor, also known as n-way array or multidimensional ma-
trix or n-mode matrix, is a higher order generalization of a
vector ( first order tensor) and a matrix (second order tensor)[3].
A tensor A can be represents as

A ∈ RI1×I2×...×IN . (1)

There are 3 major tensor decomposition tools: HOSVD
(also called TUCKER), PARAFAC (also called CANDECOMP),
and Multiple-SVD. Details of the 3 decomposition tools will
be discussed in the following subsections.

2.1. High Order SVD

In SVD, a matrix or order-2 tensor A can be decomposed as
matrix product: A = U1ΣUT

2 . This matrix product can be
rewritten as[4]

A = σ ×1 U1 ×2 U2. (2)

By extension, a tensor A of order N > 2 is an N-dimensional
matrix comprising N spaces. ”High Order SVD (HOSVD)” is
an extension of SVD that orthogonalizes these N spaces and
expresses the tensor as the mode-n product of N-orthogonal
spaces[4]:

A = Z ×1 U1 ×2 U2... ×n Un... ×N UN . (3)

Tensor Z , known as the core tensor, is analogous to the diag-
onal singular value matrix in conventional matrix SVD.

Our HOSVD-based algorithm is as follows:
1. Decompose the tensor using HOSVD:

A = Z ×1 U1 ×2 U2 ×3 U3. (4)

2. Project each trajectory pair on the 2 bases U1 and U2:

MCoeff = UT
1 × MTrajPair × U2. (5)

3. Project query trajectory pair on the 2 bases, derived in step
2 above, using the following:

MQueryCoeff = UT
1 × MTrajQuery × U2. (6)
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4. Calculate the Euclidean distance norm D between
HOSVD coefficients of query trajectory and those of each tra-
jectory in the tensor, and return the ones that have the mini-
mum distance.

D = ||(MCoeff − MQueryCoeff )||2. (7)

where in equ.(2)-(7), Ui is the ith HOSVD base, UT
i is trans-

pose of Ui, MCoeff and MQueryCoeff are the coefficient ma-
trices of trajectory pair in tensor and query trajectory, MTrajPair

and MTrajQuery are trajectory matrices of trajectory in tensor
and query trajectory, respectively.

2.2. PARAFAC

The Parallel Factors (PARAFAC) [5] Decomposition or Canon-
ical Decomposition (CANDECOMP) of a tensor A is a de-
composition of A as a linear combination of a minimal num-
ber of rank-1 tensors as following

A =
R∑

r=1

ρr ×1 W
(r)
1 ×2 W

(r)
2 ×3 ... ×N W

(r)
N . (8)

where R is the number of components.
Our PARAFAC-based algorithm is as follows:

1. Decompose the tensor into 3 loading vectors:

A =
R∑
r

ρr ×1 W
(r)
1 ×2 W

(r)
2 ×3 W

(r)
3 . (9)

2. Project each trajectory pair on the first 2 bases using the
formula below:

MCoeff = WT
1 × MTrajPair × W2. (10)

3. Project query trajectory pair on the 2 bases, derived in step
2 above, using the formula:

MQueryCoeff = WT
1 × MTrajQuery × W2. (11)

4. Calculate the Euclidean distance norm D between
PARAFAC coefficients of query trajectory and those of each
trajectory in the tensor, and return the ones that have the min-
imum distance.

D = ||(MCoeff − MQueryCoeff )||2. (12)

where in equ.(8)-(12),W (r)
i is the ith loading(base)of PARAFAC,

WT
i is transpose of Ui, MCoeff and MQueryCoeff are the co-

efficient matrices of trajectory pair in tensor and query trajec-
tory, MTrajPair and MTrajQuery are trajectory matrices of
trajectory in tensor and query trajectory.

2.3. Multiple-SVD

The Multiple-SVD decomposition of a tensor can be viewed
as recursive use of SVD. By viewing slices of tensor, which
are matrices, as vectors, the tensor can be viewed as a matrix,
then first use SVD on the matrix, and then use SVD on the
slice-matrices, as shown below:

A = σ1 ×1 A1...(N−1) ×2 VN . (13)

A1...(N−1) = σ2 ×1 A1...(N−2) ×2 VN−1. (14)

...

A12 = σN−1 ×1 V1 ×2 V2. (15)

Our Multiple-SVD algorithm is summarized as:
1. Decompose the tensor as follows:

A = σ1 ×1 A12 ×2 V3. (16)

U12 = σ2 ×1 V1 ×2 V2. (17)

2. Project each trajectory pair in the tensor onto the 2 bases of
interests (For example, V1 and V3), following these formulas:

MCoeff1 = V T
11 × MTrajPair × V31. (18)

MCoeff2 = V T
12 × MTrajPair × V32. (19)

3. Project query trajectory pair on the 2 bases, derived in step
2 above, using the formulas:

MQueryCoeff1 = V T
11 × MTrajQuery × V31. (20)

MQueryCoeff2 = V T
12 × MTrajQuery × V32. (21)

4. Calculate the Euclidean distance norm D between
Multiple-SVD coefficients of query trajectory and those of
each trajectory in the tensor, and return the ones that have the
minimum distances.
D=
√

(MCoeff1 − MQueryCoeff1)2 + (MCoeff2 − MQueryCoeff2)2.
(22)

where in equ.(13)-(21), A1...N is matrix indexed by 1 to N,
Vi are bases of conventional matrix SVD. V T

i is transpose
of Vi. MCoeff1,MCoeff2,MQueryCoeff1,MQueryCoeff2 are
coefficient matrices; MTrajPair,MTrajQuery are trajectory
in the tensor and query trajectory matrix.

2.4. Comparison of HOSVD, PARAFAC and Multiple-SVD

As discussed above, both HOSVD and PARAFAC are effec-
tive tensor analysis tools and are widely used. One major dif-
ference is that in PARAFAC, a tensor is represented as a linear
combination of rank-1 tensors which is the outer products of
loading vectors; while in HOSVD, a tensor is represented as
a product of the core tensor and loading vectors.
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Specifically, suppose we have a third-order tensor A. In
PARAFAC, the tensor A will be represented as a linear com-
bination of rank-1 tensors. The element aijk of the tensor A
is expressed as following:

aijk =
W∑
l=1

ailbjlckl. (23)

where W is the number of components (factors) of PARAFAC.
While in HOSVD, the core tensorZ is of size W1×W2×W3,
then the element aijk of the tensor A is expressed as follow-
ing:

aijk =
W1∑
l=1

W2∑
m=1

W3∑
n=1

ailbjmcknzlmn. (24)

Multiple-SVD is a recursive use of SVD.

3. GLOBAL AND SEGMENTED APPROACH

When full trajectory data is available, we can use it to con-
struct the trajectory tensor, then apply the three tensor decom-
position methods to construct our indexing and query sys-
tems. This approach is called Global approach, which indi-
cates that we use global (full) trajectory data.

When only partial trajectory data is available, or when we
wish to evaluate similarity based on partial trajectory informa-
tion only, we use the segmented trajectory approach described
next.

We segment the full trajectory pairs into atomic meaning-
ful ”units” which are called subtrajectory pairs. These atomic
units of actions are defined as motion events due to signif-
icant changes such as the points of change in velocity (1st
order derivative) and acceleration (2nd order derivative). The
spatial curvature of a 2-D curve is given by :

K[k] =
x′[k]y′′[k] − y′[k]x′′[k]
[(x′[k])2 + (y′[k])2]3/2

. (25)

The value of curvature at any point is a measure of inflection
point, an indication of concavity or convexity in the curve.
A hypothesis testing based approach is used to locates these
points of change. From the curvature pair, two non-overlapping
windows of equal dimension are extracted. Let X and Y be
two such windows where X contains the first n samples of
the curvature pair, and Y contains the next n samples. Let
Z be the 2×2n dimension window formed by concatenating
X and Y. Then we perform the likelihood ratio test to deter-
mine if the two windows X and Y have data drawn from the
same distribution. Specifically, we verify the following two
hypothesis:

H0 : fx(X; θx) = fy(Y ; θy) = fz(Z; θz).
H1 : fx(X; θx) �= fy(Y ; θx). (26)

Assume that curvature pair data in each window form an i.i.d
random variable and they are 2-D jointly Gaussian. We first

compute the maximum likelihood estimator of mean and vari-
ance in each window. Then calculate the distance d between
the distributions of X and Y. We define the distance d between
X and Y as

d(X, Y ) = −log
√

(2π)
σ11σ12

√
1 − ρ2

1σ21σ22

√
1 − ρ2

2

σ31σ32

√
1 − ρ2

3

+
1
2

{ 1
1 − ρ2

3

[ 2∑
i=1

(x3i − µ3i)2

σ2
3i

−2ρ3(x31 − µ31)(x32 − µ32)
σ31σ32

]

− 1
1 − ρ2

1

[ 2∑
i=1

(x1i − µ1i)2

σ2
1i

− 2ρ1(x11 − µ11)(x12 − µ12)
σ11σ12

]

− 1
1 − ρ2

2

[ 2∑
i=1

(x2i − µ2i)2

σ2
2i

−2ρ2(x21 − µ21)(x22 − µ22)
σ21σ22

]}
.

(27)
where µi1,µi2,σi1,σi2,ρi are means, variances and correlation
coefficient of 2-D Gaussian distributions, i=1,2,3 represents
distribution of X,Y and Z, respectively. d is larger if X and
Y have different distributions. We define decision rule which
decides in favor of H1 if d is above a threshold α.

4. SIMULATION RESULTS

In our simulation, we use the ASL (Australian Sign Lan-
guage) dataset, which consists of 95 different sign trajectory
classes, each class consists of 20 trajectory pairs.

We first compare the three tensor decomposition in terms
of compactness. PARAFAC decomposition significantly re-
duces the size of data required to represent the underlying
trajectory data. For example, if the original data is 1024 tra-
jectory pairs, then the HOSVD uses a matrix of 1024 × 2 co-
efficients to represent the data, Multiple-SVD uses a matrix
of 1026 × 2 coefficients, and PARAFAC with 12 components
represents the entire data using only a matrix of 12 × 12 co-
efficients.

For the quantitative assessment of the three tensor de-
compositions, we compute the conventional Precision-Recall
curves. The conventional definition of precision (Pp) and re-
call( Pr) metrics are the following:

Pp = |Xi ∈ T | \ |N |. (28)

Pr = |Xi ∈ T | \ |T |. (29)

where the || operator returns the size of the set; |Xi ∈ T |
means retrieved and relevant, N is the size of returned list and
T is the size of target set in database. Figures 1 and 2 show the
Precision and Recall curve for Tensor-based indexing and re-
trieval of full trajectory pairs and segmented trajectory pairs,
respectively. PARAFAC shows superior performance than the
other two methods for both full trajectory and segmented tra-
jectory based systems, particularly it outperforms the other
two in the case of segmented trajectory based system.
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Fig. 1. Precision and Recall Curve for Global Approach

Fig. 2. Precision and Recall Curve for Segmented Approach

Since indexing and query times are also very important
criteria in evaluating the performance of the indexing and
retrieval system, we next compare the three decompositions
in term of these parameters. As we can see in Figure 3,
PARAFAC has a relatively insignificant query time (130 msec
vs 19 seconds) compared to the other decompositions. How-
ever, it is at the expense of large indexing time. Note that
generally indexing is an offline process and query time dic-
tates whether a system can be used for realtime applications.
We assert that for practical application, the reduction of re-
trieval time is much more important than the reduction of the
indexing time.

Figure 4 shows the indexing and retrieval performance
of the three decompositions for segmented trajectory based
systems. PARAFAC yields superior performance again with
much smaller retrieval time.

5. CONCLUSIONS

In this paper, three original tensor-based approaches solving
the problem of indexing and retrieval of multiple-object tra-
jectories have been proposed. Simulation results on the ASL
dataset show higher precision-recall values, much smaller query
processing times, and higher compression ratios for PARAFAC-
based systems compared with other tensor-based approaches.

Fig. 3. Comparison of Indexing and Query Time of Global
Approach

Fig. 4. Comparison of Indexing and Query Time of Seg-
mented Approach
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