
AN NEW COEFFICIENTS TRANSFORM MATRIX FOR THE TRANSFORM DOMAIN

MPEG-2 TO H.264/AVC TRANSCODING

Gao Chen1,2, Shouxun Lin1, Yongdong Zhang1, Gang Cao1

1 Institute of Computing Technology, Chinese Academy of Sciences Beijing, 100080, China
2 Graduate School of the Chinese Academy of Sciences, Beijing, 100039, China

Email: {chengao, sxlin, zhyd, gcao}@ict.ac.cn

ABSTRACT

In this paper, a fast transform method is proposed to convert

MPEG-2 8-tap discrete cosine transform (DCT) coefficients

to H.264/AVC 4-tap integer transform coefficients directly

in the transform domain. The proposed transform method

saves 16 operations for each 8 8 DCT block by utilizing a

novel transform kernel matrix and a fast computing method

for multiplication of this new matrix. The simulation results

show that the proposed method causes only a very little

quality degradation, which is completely negligible in

practice with the maximum value lower than 8 10
3
dB, as

compared with Jun Xin’s method. Hence, it can be

efficiently used in the transform-domain MPEG-2 to H.264

transcoding.

1. INTRODUCTION

The newest video-coding standard, known as H.264/AVC

[1], jointly developed by the Joint Video Team of ISO/IEC

MPEG and ITU-T VCEG, is highly efficient offering

perceptually equivalent quality video at about 1/3 to 1/2 of

the bit-rates offered by the MPEG-2 format [2]. Due to its

superior compression efficiency, it is expected to replace

MPEG-2 in digital video systems, but the complete

migration to H.264 will take several years given the fact that

MPEG-2 has been widely used in many applications

nowadays, including DVD and digital TV. This creates an

important need for transcoding technologies that transcode

the widely available MPEG-2 compressed videos to H.264

compressed format and vice versa [3][4]

The transform domain transcoder is simpler than the one

in the conventional pixel domain, since the former avoids

the complete decoding and re-encoding which are

computationally expensive. For this reason, there has been a

great effort in recent time to develop fast algorithms that

conduct MPEG-2 to H.264 transcoding in the transform

domain [5][6]. Unlike other transform domain transcoding,

such as H.263 to MPEG-2 transcoding, the DCT

coefficients in MPEG-2 to H.264 transcoding cannot be

reused directly and have to be converted to H.264 integer

transform coefficients. This is because that H.264 and

MPEG-2 are based on different transformation kernels to

produce transform coefficients, that is H.264 uses a 4-tap

integer transformation (we refer as IT thereinafter), while

MPEG-2 uses 8-tap DCT to produce transform coefficients.

Thus, one of the indispensable steps in the transform

domain MPEG-2 to H.264 transcoding is to convert DCT

coefficients to IT coefficients, i.e. DCT-to-IT transform. In

the conventional pixel domain MPEG-2 to H.264 transcoder,

there also exits the problem of DCT-to-IT transform. That is

the de-quantized MPEG-2 DCT coefficients are first

converted to pixels data through inverse DCT and are then

transformed to IT coefficients through IT. This process is

also called the pixel domain method [7][8]. Obviously, this

method cannot be adopted in the transform domain

transcoder since that the incoming MPEG-2 video sequence

is already decoded to the pixel data.

The role of DCT-to-IT transform in MPEG-2 to H.264

transcoder is equal to the transform, such as DCT, in one of

video encoder. There are many fast DCT algorithms have

been proposed to implement the video encoder efficiently

[9]. In order to implement the MPEG-2 to H.264 transcoder

efficiently in the transform domain, we should try our best

to speed up the process of DCT-to-IT transform. Jun Xin et

al., [7] and Bo Shen [8] have derived two different

transform kernel matrices for DCT-to-IT transform, and

have showed their methods outperform the pixel domain

method respectively. Although Jun Xin’s method needs 64

less operations compared with Bo Shen’s method, there still

exits 19 nonzero elements in his transform kernel matrix,

which cause DCT-to-IT transform to need 352

multiplications and 352 additions (for total of 704

operations). In this paper, we propose a novel transform

kernel matrix based on the factorization of DCT. The new

transform matrix saves 16 operations for each 8 8 DCT

block compared with the Jun Xin’s matrix.

The rest of the paper is organized as follows. We derive a

novel transform kernel matrix based on the factorization of

DCT in Section 2. Furthermore, we also propose a fast

computing process for matrix multiplication using the new

transform kernel matrix in Section 3. Simulation results are

3211­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

given in Section 4, and conclusions are provided in Section

5.

2. NOVEL TRANSFORM KERNEL MATRIX

Because Jun Xin’s DCT-to-IT transform kernel matrix is

more efficient than the one of Bo Shen, we adopt Jun Xin’s

matrix as our start point. At the same time, the factorized

form of DCT matrix adopted by Bo Shen in [8] is also

exploited to derive our new transform kernel matrix. The

detailed process is presented in the following.

Let T8 be the transform kernel matrix of DCT, H be the

IT transform matrix and K represent the matrix:

H

H
K

0

0
. The Jun Xin’s DCT-to-IT transform

kernel matrix S is given by

TT
TKT

H

H
S 88

0

0
 (1)

Where the superscript T denotes matrix transposition. For

the proof and more details of the S, please refer to [7].

A factorization of DCT that is the fastest existing

algorithm for 8-point DCT due to Arai, Agui, and Nakajima

[9][10] is exploited to perform the factorization of the

transform kernel matrix S. According to this factorization,

T8 is represented as T8 DPB1B2MA1A2A3, where the

matrices on the right-hand side are defined as in [9, pp. 53-

57]. Thus, we can rewrite equation (1) into

TTTTTTTTT
DPBBMAAAKTKS 121238

 (2)

Where D is a diagonal matrix, and P is a permutation

matrix. We observe that D DT and P PT. So

DPBBMAAAKS TTTTT
)(21123 (3)

After calculating and comparing all possible

combinations of this sequence of matrix multiplications, we

find that the product of the matrices within the over braces

renders the sparest matrices. Then we define:
TTTTd MAAAKS 123

, and have

 DPBBSS Td)(21 (4)

DCT-to-IT transform now can be carried out

multiplication by (B1B2)
T and Sd in turn. The multiplication

of matrix D can be ignored since it can be absorbed in

MPEG-2 inverse quantization matrix without any changes

in arithmetic complexity of the de-quantizer. The matrix P

causes only changes in the order of the components, thus it

can be ignored as well. The matrix (B1B2) only contains 0, 1

and –1. The matrix Sd can be used as the novel transform

kernel matrix to perform DCT-to-IT transform. The matrix

(B1B2) and S
d
 are shown in the following.

10110000

11100000

11100000

10110000

00001100

00001100

00000010

00000001

21BB (5)

10200

1000040

20400

10004

10200

1000040

20400

10004

hgb

b

fed

cba

hgb

b

fed

cba

S d (6)

Where the const values a … h are (rounded off to four

decimal places): a= 1.0824, b= 1.4142, c=2.6132, d= 4.2426,

e= 3.9198, f= 1.6236, g= 1.3066, h= 0.5412.

3. FAST COMPUTING METHOD FOR

MULTIPLICATION OF S
d

The sparseness and symmetry of Sd can be exploited to

perform the multiplication of S
d
. Let z be an 8-dimensional

column vector, and the vector Z be the one-dimensional (1D)

DCT-to-IT transform result of z. The following steps

describe the fast computing method for multiply B1B2 and

Sd to z, which is also depicted in Fig. 1 as a flow graph.

First step, multiplication by (B1B2)
T:

x[1] z[1]

x[2] z[2]

x[3] z[3] z[4]

x[4] z[3] z[4]

x[5] z[5] z[8]

x[6] z[6] z[7] z[5] z[8]

x[7] z[6] z[7]

x[8] z[5] z[6] z[7] z[8]

Second step, multiplication by S
d
:

m1 4 x[1]

m2 a x[5] b x[6] c x[7] x[8]

m3 f x[7] x[8] x[8] e x[5]

m4 d x[3] 4 x[4]

m5 4 x[2]

m6 x[8] b x[6]

322

m7 g x[5] h x[7] x[8]

m8 b x[3] x[4] x[4]

Z[1] m1 m2

Z[2] m3 m4

Z[3] m5 m6

Z[4] m7 m8

Z[5] m1 m2

Z[6] m3 m4

Z[7] m5 m6

Z[8] m7 m8

Figure 1. Flow graph for DCT-to-IT transform using Sd

When we count the number of operations in the flow

graph, we get 13 multiplications and 30 additions. The two-

dimensional (2D) case will be a repeated 1D application for

very row and then for very column of an 8 8 DCT block.

It follows that 2D (B1B2)
T needs 160 (16 10) additions

and 2D Sd needs 208 (16 13) multiplications and 320

(16 20) additions, for total of 688 operations. Thus, our

proposed method saves 144 multiplications but increases

128 additions compared with Jun Xin’s method. In other

words, our method saves 16 operations totally compared

with Jun Xin’s method. That also means that 128

multiplications in the process of matrix multiplications are

replaced by additions.

Table 1 Number of operations for DCT-to-IT transform

Method Add Mul Shift
Sum of

Operations

Pixel

domain
672 256 64 992

Bo Shen 352 352 64 768

Jun Xin 352 352 0 704

Our

Proposed
480 208 0 688

The number of operations required in different methods

for DCT-to-IT transform is tabulated in Table 1.

Considering that the real-arithmetic multiplication operation

is usually three to four times higher time overhead than the

real-arithmetic addition operation in most processor, our

proposed method saves more computational complexity and

can be implemented more efficiently in ASIC, DSP and

media processor.

4. SIMULATION RESULTS

We adopt MPEG software simulation group MPEG-2

software decoder [11] to decode MPEG-2 input video bit-

streams. The decoded DCT coefficients are converted to IT

coefficients using Jun Xin’s method and our proposed

method respectively. In order to avoid the influences of

H.264 coding tools, such as intra prediction and variable

block size motion compensation, the IT coefficients are

directly subjected to H.264 quantization, inverse

quantization and inverse IT processes (the same processes

in the reference software H.264/AVC JM8.2 [12]) instead of

H.264 re-encoding process to get the reconstructed pixels

data. The H.264 re-quantization parameter ranges from 0 to

51 corresponding to the full H.264 quantization parameter

range. The MPEG-2 bit-streams for simulation are

compressed in the MPEG-2 encoder [11]. All MPEG-2 bit-

streams are intra-coded with the frame rate of 30 frames/s

with four different target bit-rates: 2.5 Mbps/s, 3.5 Mbps/s,

4.5 Mbps/s and 6 Mbps/s respectively. The block diagram

of simulation setting is shown in Fig. 2.

Figure 2. Simulation setting

Extensive simulations and performance comparison have

been done with different motion characteristic sequences,

but we only give the comparison results of STEFAN and

FOREMAN which are shown in Fig. 3 and the similar

results of other sequences are omitted in this paper due to

the limit of page. The actual runtime requirements for both

methods are to be presented elsewhere in a separate paper

[13] also for the same reason.

Though our proposed method is not approximation of Jun

Xin’s method and is equivalent in terms of functionality, it

323

still causes a little quality degradation. This is because that

there exits the rounding error in the implementing of

absorbing the diagonal matrix D to MPEG-2 de-

quantization process. However, the degradation is very

small with the maximum value lower than 8 10
3
dB as

shown in Fig. 3, which is completely negligible in practice.

0 10 20 30 40 50 60
-8

-7

-6

-5

-4

-3

-2

-1

0
x 10

-3

QP

R
e

la
tiv

e
 P

S
N

R
 c

h
a

n
g

e
s
 (

d
B

)

2.5M

3.5M

4.5M

6M

Pr opo sed VS. Jun Xin for Stefan

(a) STEFAN

0 10 20 30 40 50 60
-8

-7

-6

-5

-4

-3

-2

-1

0
x 10

-3

QP

2.5M

3M

3.5M

4M

Pr opo sed V S. Jun Xin for Fo re man

R
e

la
ti
ve

 P
S

N
R

 c
h
a

n
g
e

s
 (

d
B

)

(b) FOREMAN

Figure 3. Relatively average PSNR difference of our

proposed method vs. Jun Xin’s method for STEFAN (a) and

FOREMAN (b) by changing the re-quantization parameter

form 0 to 51 with four different input bit rates

5. CONCLUSION

We have proposed a novel DCT-to-IT transform kernel

matrix Sd based on the factorization of DCT and

furthermore a fast computing process for the multiplication

of Sd exploited the sparseness and symmetry of Sd is

presented. Relative to Jun Xin’s method, our proposed

method saved 16 operations for each 8 8 DCT blocks,

while achieved almost the same video quality. In order to

further reduce the computation of DCT-to-IT transform, the

integer form of S
d
 can be easily derived using the similar

method described in [7], and the multiplications to compute

Sd also can be replaced by just using add operations and

shift operations just like doing in [8].

6. ACKNOWLEDGEMENT

This work is supported by National Nature Science

Foundation of China (60302028) and Key Project of the

International Technical Cooperation (2005DFA11060).

7. REFERENCES

[1] Thomas Wiegand, Gary Sullivan. “Draft ITU-T

Recommendation and Final Draft International Standard of

Joint Video Specification (ITUT Rec. H.264 | ISO/IEC

14496-10 AVC),” JVT-G050, Pattaya, Thailand, Mar. 2003.

[2] ISO/IEC JTC11/SC29/WG11, “Generic Coding of

Moving Pictures and Associated Audio Information: Video”,

ISO/IEC 13818-2. May 1994.A. N. Netravali and B. G.

Haskell, Digital Pictures, 2nd ed., Plenum Press: New York,

1995, pp. 613-651.

[3] A. Vetro, C. Christopoulos, and H.Sun. “Video

Transcoding Architectures and Techniques: An Overiew”.

IEEE Signal Processing Magazine, Vol 20, no.2, pp.18-29,

March. 2003.

[4] Hari Kalva. “Issues in H.264/MPEG-2 Video

Transcoding”. CCNC 2004. First IEEE, 5-8 Jan. 2004.

[5] Hari Kalva, Branko Petljanski, and Borko Furht.

“Complexity Reduction Tools for MPEG-2 to H.264 Video

Transcoding.” WSEAS Transactions on Information

Science & Applications, Vol. 2, Issues, Marc. 2005, pp.

295-300.

 [6] Chen Chen, Ping-Hao Wu, and Chen, H, “Transform-

domain intra prediction for H.264,” Circuits and Systems,

2005. ISCAS 2005. IEEE International Symposium on 23-

26 May 2005 Page(s):1497-1500 Vol 2

[7] J. Xin, A. Vetro and H.Sun, “Converting DCT

coefficients to H.264/AVC transform coefficients,” IEEE

Pacific-Rim Conference on Multimedia (PCM), Lecture

Notes in Computer Science, ISSN: 0302-9743, November

2004, Vol.3332/2004 pp. 939.

[8] Bo Shen, "From 8-tap DCT to 4-tap integer-transform

for MPEG to H.264 transcoding". Proc IEEE International

Conference on Image Processing, ICIP '04, Oct 2004, Vol 1,

Page(s): 115 – 118.

[9] W.B.Pennebaker and J.L.Mitchell, “JPEG Still Image

Data Compression Standard,” Van Nostrand Reinhold, 1993.

[10]Y. Arai, T.Agui and M. Nakajima, “ A Fast DCT-SQ

scheme for Images,” Trans. Of the IEICE, E 71(11): 1095,

November 1988.

[11] MPEG-2 video decodec v12, available online at

http://www.mpeg.org/MPEG/MSSG.

[12] H.264/AVC reference software JM8.2, available online

at http://bs.hhi.de/~suehring/tml/download.

[13] Gao Chen, shouxun Lin, and Yongdong Zhang, “A

Fast Scheme for Converting DCT Coefficients to

H.264/AVC Integer Transform Coefficients”, submitted to

ICIAR2006.

324

