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ABSTRACT

An iterative model selection algorithm is proposed. The algo-
rithm seeks relevant features and an optimal number of code-
words (or codebook size) as part of the optimization. We use
a well-known separability measure to perform feature selec-
tion, and we use a Lagrangian with entropy and codebook size
constraints to find the optimal number of codewords. We add
two model selection steps to the quantization process: one
for feature selection and the other for choosing the number of
clusters. Once relevant and irrelevant features are identified,
we also estimate the probability density function of irrelevant
features instead of discarding them. This can avoid the bias
of problem of the separability measure favoring high dimen-
sional spaces.

1. INTRODUCTION

In vector quantization (VQ) [5] an input vector is represented
by one of a predefined set of patterns on the basis of which
pattern is closest to the given input vector. The encoder and
decoder in VQ are associated with partitions (clusters) and
codewords (cluster centers), respectively. Thus VQ design
can be viewed as a clustering algorithm. In addition VQ can
be viewed as fitting a model when partition cells are repre-
sented by their conditional probability density functions (pdf)
and prior probabilities are weights. In particular, we are in-
terested in fitting Gauss mixture models (GMM) to data us-
ing Gauss mixture VQ (GMVQ) [7] because GMM has been
used successfully in various areas in signal processing and
shown to be robust [3]. The most popular approach to fitting
a GMM to data is the EM algorithm [17], but the Lloyd al-
gorithm [9][7] provides an alternative. The Lloyd algorithm
is an iterative algorithm: it first assigns data to the closest
cluster centers, next updates cluster centers, and then iterate
these two steps until convergence is reached. The EM algo-
rithm makes soft decisions for input data, whereas the Lloyd
algorithm makes hard decisions. See [7] for more details.

In pattern recognition it is important to find informative
(or relevant) features and the underlying distribution of given
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data. This can be also applied to VQ. We need to decide
which features to use in VQ design. We will consider only
feature selection in this paper for its simplicity and the in-
terpretability of the effect of features on learning. Many al-
gorithms have been suggested for feature selection [4]. We
largely follow a well-known feature selection criterion of [14]
that tries to maximize separability among clusters in select-
ing features. Since clusters are more separable in higher di-
mensional spaces, the separability based criterion can prefer
higher dimensional spaces without necessarily finding rele-
vant features. We try to avoid this bias problem by keeping
irrelevant features and estimating their distribution instead of
discarding them.

If we use GMM to represent the underlying distribution
of data (or fit GMM to data), then we need to estimate mean
vectors, covariance matrices, prior probabilities and the num-
ber of Gaussian components in GMM. Here the number of
Gaussian components corresponds to the number of clusters.
Parameters except the number of Gaussian components can
be estimated by a sample based approach with (or without)
regularization [6][8]. Estimating the number of clusters has
been actively studied over the years and many algorithms have
been suggested, including an EM based approach with com-
plexity penalties [19], a Bayesian approach [13], and an infor-
mation theoretic approach [12]. See also [4][18]. This is not
only an important problem in unsupervised learning where
we do not know how many classes exist, but also is an impor-
tant issue in supervised learning when we need to decide the
number of components to fit a mixture model to each class.

A more important fact is that feature selection and esti-
mating the number of clusters can not be separated. They
need to be optimized jointly. We consider them as parameters
to be optimized in VQ design and embody optimization steps
for model selection into the classic Lloyd algorithm. We try
to optimize them iteratively one at a time.

2. BACKGROUND

A vector quantizer of dimension p and size N is made up with
an encoder α, a decoder β and a length function l. An en-
coder α is a mapping of an input vector x in p-dimensional
Euclidean space, Rp into an index i ∈ I = {1, 2, ..., N}, and
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α is associated with partition S = {Si, i = 1, 2, ..., N} such
that Si = {x : α(x) = i}. A decoder β converts the index
into a source reproduction x̂ , and β is associated with a re-
production codebook C = {β(i) : i ∈ I}. Finally a length
function {l(i) : i ∈ I} is admissible if

∑
i∈I e−l(i) ≤ 1. For

a fixed-rate quantizer, l(i) is fixed at ln(N) for all i. Oth-
erwise a quantizer is said to be variable-rate. We denote a
quantizer q as q(x) = β(α(x)).

The performance of a quantizer is measured by average
distortion between input X and its reproduction X̂ = β(α(X)),
and rate. If X has a pdf f , average distortion and rate are de-
fined as Ef (q) = Efd(X,β(α(X)) and Rf (q) = Ef l(α(X)),
respectively when Ef denotes expectation with respect to f. A
Lagrangian combination of average distortion and rate is used
to find the optimal q in the entropy-constrained VQ (ECVQ)
[1]. By using a Lagrangian multiplier λ > 0, we define the
Lagrangian distortion ρ(λ, x, i) = d(x, β(i)) + λl(i), and the
expected Lagrangian distortion is

ρ(λ, f, q) = Ef (d(X,β(α(X))) + λl(α(X))) (1)

Then Lloyd’s necessary conditions for a variable-rate quan-
tizer q to be optimal are

• For a given decoder β, and length function l, the opti-
mal encoder α(x) = argmini(d(x, β(i)) + λl(i)).

• For a given encoder α, and length function l, the op-
timal decoder β(i) = argminyE(d(X, y|α(X))) if the
minimum exists.

• For a given encoder α, and decoder β, the optimal length
function l(i) = -ln(Pr(α(X) = i)).

• Pr(α(X) = i) �= 0 for i ∈ I.

For a fixed rate quantizer q, l(i) is fixed and rate does not
play a role in codebook design. This is equivalent to λ = 0
and corresponds to the generalized Lloyd algorithm [5].

VQ can be thought of as a classifier in the sense that they
both assign input data to the closest partitions or clusters. A
classifier assigns each observed sample to one of a collection
of clusters based on a discriminant rule. A discriminant rule is
usually defined to minimize misclassification risk [6], which
is the expected cost or loss (L(i, k), 1 ≤ i, k ≤ N ) of classi-
fying a sample to cluster i when it actually belongs to cluster
k. By using a simple 0-1 loss function [6], the risk function in
[6] reduces to choosing the k that maximizes fk(X)pk, where
pk and fk(X) are the prior probability of cluster k and the
cluster conditional pdf of cluster k, respectively. If we model
f(X) by a GMM and take the negative log of fk(X)pk, the
risk function in [6] becomes the following:

i = argmin1≤k≤Nd(x, µk,Σk) − log(pk) (2)

where d(x, µk, Σk) = 1
2
(x−µk)tΣ−1

k (x−µk)+ 1
2

log ((2π)p|Σk|),
and µk and Σk are mean vector and covariance matrix of clus-
ter k. (2) is equivalent to the first necessary condition of the
Lloyd algorithm when λ = 1.

3. MODEL SELECTION

3.1. Feature Selection based on Separability Measure

We use a separability based criterion to select features. Sepa-
rability can be measured by the within class scatter matrix Sw

and the between class scatter matrix Sb, and they are defined
as follows:

Sw =
N∑

k=1

pkΣk (3)

Sb =
N∑

k=1

pk(µk − µ)(µk − µ)t (4)

Σk = E
(
(X − µk)(X − µk)t|α(X) = k

)
(5)

µk = E(X|α(X) = k) (6)

µ = E(X) =
N∑

k=1

pkµk (7)

where µk and Σk are mean vector and covariance matrix of
cluster k, and pk is the prior probability of cluster k.

Sw and Sb measure within cluster scatter and between
cluster scatter, respectively. We follow trace(S−1

w Sb) crite-
rion [14] to select features. The larger trace(S−1

w Sb) is, the
more separable clusters are. trace(S−1

w Sb) is invariant to any
nonsingular linear transformation, but it prefers higher dimen-
sional spaces: trace(S−1

w Sb) monotonically increases with re-
spect to dimension when there is no change in the clustering
assignments [14]. We try to ameliorate this bias problem by
keeping and estimating irrelevant features instead of discard-
ing them.

3.2. Optimizing Codebook Size

We follow a recently proposed algorithm by Gray and Gill [2]
to optimize the codebook size. Using a Lagrangian formula-
tion combining both entropy and log codebook size:

ρ(f, λ, η, q) = Ef

�
d(X, X̂) + λ[(1 − η)l(α(X)) + ηlnN ]

�
(8)

where X̂ = β(α(X)), N is the codebook size, λ > 0 and
η ∈ [0, 1].

4. VECTOR QUANTIZATION WITH MODEL
SELECTION

In the classic Lloyd algorithm, the encoder, decoder and length
function are optimized in turn for each given that the other
two are fixed. In our approach, we view the model selection
problem as an optimization problem and embody it into our
process of optimizing the codebook. More specifically, our al-
gorithm incorporates model selection into entropy-constrained
vector quantization [1].

Applying the distortion model in (2) to the Lagrangian
(8), we have the following Lagrangian
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ρ(f, λ, η, q, p) = Ef

�
d(X, µα(X), Σα(X)) +

λ((1 − η)log(pα(X)) + ηlnN)
�

(9)

where d(X, µα(X), Σα(X)) = 1
2
(X −µα(X))

tΣ−1
α(X)(X −µα(X))

+ 1
2

log
�
(2π)p|Σα(X)|

�
, X ∈ Rp, and the codebook size N .

To find relevant features, we assume that a feature vector
X can be partitioned into two subvectors: a relevant subvector
Xr and an irrelevant subvector Xir.

X = (Xr, Xir) (10)

where X ∈ Rp, Xr ∈ Rm, Xir ∈ Rp−m, and 1 ≤ m ≤ p.
We try to find optimal Xr that maximizes

Sep(m,N) = trace(Sw(m,N)−1Sb(m,N)) (11)

where Sw(m,N) and Sb(m,N) are now

Sw(m, N) =

N�

k=1

pkΣk,m

Sb(m, N) =
N�

k=1

pk(µk,m − µ)(µk,m − µ)t

Σk,m = E
�
(X − µk,m)(X − µk,m)t|α(Xr) = k

�

µk,m = E(X|α(Xr) = k)

µ = E(X)

We add the following two optimality conditions to the
Lloyd algorithm in Section 2 using (8) and (9):

• For a given encoder α, decoder β, length function l, and
dimension of feature vector p, the optimal codebook
size N is the size of codebook C such that there is no
codebook C′ ⊂ C for which

ρ(f ′, λ, η, q′, p) < ρ(f, λ, η, q, p), (12)

where f ′ and q′ are obtained from f and q by selecting
|C′| codewords of C.

• For a given encoder α, decoder β, length function l,
and codebook size N = |C|, the optimal dimension of
relevant feature Xr is m such that there is no m′ < m
for which

Sep(m, N) ≤ Sep(m′, N ′) (13)

where N ′ ≤ N .

As the Lloyd algorithm iterates, we can improve a code-
book C by removing one or more codewords as long as the
increase in Ef (d(X, β(α(X))) + λ[(1 − η)l(α(X)) is less than
the decrease in ληlnN , and we can improve a relevant feature
vector Xr by moving one or more features of Xr to Xir as
long as (13) does not decrease.

5. EXPERIMENTAL RESULTS

We test our algorithm on a synthetic data set and two real
word data sets from the UCI learning repository. We compare
our algorithm with algorithms by Dy et al [15]. They consid-
ered both EM and k-means (fixed-rate VQ using MSE) to op-
timize choosing the number of clusters and selecting features
with a vast amount of experiments. They considered two fea-
ture selection criteria: a scatter matrix criterion (termed TR
hereafter; refer to [15] for more details) and a maximum like-
lihood (ML) criterion, and a penalty term is added to the log-
likelihood to find the number of clusters. To reduce the com-
plexity of searching in feature selection they used sequential
forward search, but they performed exhaustive searching to
find the number of clusters. We follow their evaluation mea-
sures: ten-fold cross validation error, recall, and precision.

In both synthetic and real world data sets, we know the
class memberships of data, but we only use this information to
measure the performance of algorithms in comparison. Thus
we first perform unsupervised learning and let our algorithm
find clusters with choosing the number of clusters and rel-
evant features by itself. Then we label each cluster by the
majority of feature vectors assigned to it. In testing, we as-
sign each data point to the one with the smallest Lagrangian
distortion and classify it by the label of the closest cluster. We
measure the cross-validation error by averaging the misclassi-
fication error ratio. Recall is defined as the number of relevant
features in the selected subset divided by the total number of
relevant features, and precision is defined as the number of
relevant features in the selected subset divided by the total
number of features selected. Recall and precision are used to
measure the algorithm’s ability to select relevant features.

We fit GMM to data by using the Lloyd algorithm with
two model selection steps. We set λ = 1/(1−η) to reduce the
number of parameters in (9), and we find that η ∈ [0.7, 0.85]
gives us the best results in most cases. An initial codebook is
obtained by the splitting algorithm [2].

Our synthetic data set has four equiprobable Gaussian clus-
ters with means at (0,0),(1,4),(5,5) and (5,0), and covariances
equal to I . We add three Gaussian normal random noise fea-
tures. Table 1 shows that in all aspects our Lloyd algorithm
with pruning steps is superior to EM based model selection
algorithms and finds the number of clusters and relevant fea-
tures perfectly.

Table 2 shows comparisons of ten-fold cross validation on
the iris and wine data sets. The iris data set has three classes,
four features and 150 samples. The wine data set has three
classes, thirteen features and 178 samples. In both data sets,
and our algorithm shows the minimum CV error and finds the
number of clusters perfectly trying to find relevant features.
In the wine data set, k-means shows the best performance in
terms of CV error, but it uses all features with the number
of clusters given. Thus, in both data sets, our algorithm is
superior to any other model selection algorithms compared.
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Table 1. Ten-fold cross validation results on a synthetic data. The data set

has 500 samples. CV error represents the average ten-fold cross-validation

misclassification error. Numbers in the parenthesis are standard deviations.

FSSEM-k-ML and FSSEM-k-TR stand for feature selection algorithms by

ML and Trace criteria with searching for the number of codewords based on

EM by Dy et al. EM-k represents EM algorithm with finding the number of

clusters and fixing feature set.
Four-cluster data set

Lloyd FSSEM-k-ML FSSEM-k-TR EM-k
CV error(in %) 3.4(1.3) 4.0(2.2) 4.0(2.0) 48(9.5)

Avg # of clusters 4.0(0) 4.0(0) 4.0(0) 2.0(0)
Avg precision 0.9(0.16) 0.5(0) 0.53(0.07) 0.2(0)

Avg recall 1.0(0) 1.0(0) 1.0(0) 1.0(0)

Table 2. Ten-fold cross validation results on the real world data sets. FSS-

Kmeans-k-ML and FSS-Kmeans-k-TR stand for feature selection algorithms

by ML and Trace criteria with searching for the number of codewords based

on k-means by Dy et al.
Iris data set

% CV error Avg # of clusters Avg # of features
Lloyd 0.67(2.1) 3(0) 2.8(0.4)

FSSEM-k-ML 3.3(4.5) 3.1(0.3) 2.7(0.5)
FSSEM-k-TR 4.7(5.2) 3.0(0) 2.5(0.5)

FSS-Kmeans-k-ML 4.7(4.3) 3.4(0.5) 2.4(0.5)
FSS-Kmeans-k-TR 13.3(9.4) 4.5(0.7) 2.3(0.5)

EM 3.3(5.4) fixed at 3 fixed at 4
k-means 16.7(4.5) fixed at 3 fixed at 4

Wine data set
% CV error Avg # of clusters Avg # of features

Lloyd 4.1(4.8) 3(0) 5.1(1.2)
FSSEM-k-ML 21.2(10.9) 3.9(0.8) 3.2(0.9)
FSSEM-k-TR 12.4(13.0) 3.6(0.8) 3.8(1.8)

FSS-Kmeans-k-ML 16.1(7.1) 4.1(0.3) 3.4(1.0)
FSS-Kmeans-k-TR 22.8(11.1) 3.4(0.5) 2.7(1.3)

EM 10.0(17.3) fixed at 3 fixed at 13
k-means 1.2(2.4) fixed at 3 fixed at 13

6. CONCLUSIONS

Our algorithm extends the Lloyd algorithm to seek the op-
timum number of clusters and relevant features in an itera-
tive way without discarding irrelevant features. Contrary to
the conventional model selection algorithms where optimiza-
tion is performed for each model and the best one is chosen
by comparing all models with complexity penalties, our pro-
posed algorithm selects the optimal model as we optimize
our codebook design. We add two necessary conditions for
model selection to the classic Lloyd algorithm. This reduces
the complexity of model selection significantly. Experimental
results on both synthetic and real world data sets show that our
algorithm is superior to the state of the art of model selection
algorithms on these data sets.
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