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ABSTRACT

In this paper, we present a novel decentralized Bayesian frame-
work using multiple collaborative cameras for robust and ef-
ficient multiple object tracking with significant and persistent
occlusion. This approach avoids the common practice of us-
ing a complex joint state representation and a centralized pro-
cessor for multiple camera tracking. When the objects are in
close proximity or present multi-object occlusions in a par-
ticular camera view, camera collaboration between different
views is activated in order to handle the multi-object occlu-
sion problem. Specifically, we propose to model the camera
collaboration likelihood density by using epipolar geometry
with particle filter implementation. The performance of our
approach has been demonstrated on both synthetic and real-
world video data.

1. INTRODUCTION AND RELATED WORK

Multiple Object Tracking (MOT) has received tremendous
attention due to its numerous potential applications such as
smart video surveillance and human computer interfaces. In
addition to all of the challenging problems inherent in single
object tracking, MOT has to deal with multi-object occlusion,
namely, the tracker must separate the objects and assign them
correct labels.

Most early efforts for MOT use monocular video. Many
existing approaches that address the difficulties of this chal-
lenging task are based on a centralized process and using
a joint state space representation [1]. Although these solu-
tions based on a centralized process can handle the problem
of multi-object occlusion in principle, the joint state repre-
sentation introduces much high complexity and requires ex-
ponentially increased computational cost with the number of
tracking objects [2]. Several researchers proposed decentral-
ized solutions to multi-object tracking. Yu et al. [3] use mul-
tiple collaborative trackers for MOT modeled by a Markov
random network. This approach demonstrates the efficiency
of the decentralized method. The decentralized concept was
carried further by Qu et al. [2] who proposed an Interactively
Distributed Multi-Object Tracking (IDMOT) framework us-
ing a magnetic-inertia potential model for MOT.

Monocular video has intrinsic limitations for MOT, es-
pecially in solving multi-object occlusion, due to the cam-
era’s limited field of view and the loss of the objects’ depth
information by camera projection. These limitations have
recently inspired researchers to exploit multi-ocular videos,
where expanded coverage of the environment is provided and
occluded objects in one camera view may not be occluded in
others. However, using multiple cameras raises many addi-
tional challenges. The most critical difficulties presented by
multi-camera tracking are to establish a consistent label cor-
respondence of the same object among the different views and
to integrate the information from different camera views for
tracking that is robust to significant and persistent occlusion.
Many approaches address the label correspondence problem
[4]. Establishing temporal instead of spatial label correspon-
dences between non-overlapping fields of view is discussed in
[5]. Integration of information from multiple cameras to solve
the multi-object occlusion problem has been investigated in
[6], [7]. However, either joint state representation or different
central processors have been used to integrate observations
from multiple cameras.

In this paper, we extend the concept of decentralized track-
ing using one camera presented in [2], [3] into a more compli-
cated context of multiple overlapping cameras. The objective
is to provide an efficient solution to the multi-object occlu-
sion problem by exploiting the cooperation of multi-ocular
videos. This approach avoids the computational complexity
inherent in centralized methods that rely on joint state repre-
sentation and/or joint data association in the earlier multiple
camera tracking approaches.

2. DECENTRALIZED BAYESIAN FORMULATION

We use multiple trackers, one tracker per object in each cam-
era view for MOT in multi-ocular videos. Without loss of
generality, we illustrate our framework by using two cameras.
Similar to the notations in [2], we denote the state of an ob-
ject in camera A by xA,i

t , where i = 1, . . . , M is the index
of objects, t is the time index. We denote the image observa-
tion of xA,i

t by zA,i
t , the set of all states up to time t by xA,i

0:t

where xA,i
0 is initialization prior, the set of all observations
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up to time t by zA,i
1:t . Similarly, we can denote the notations

for objects in camera B, for instance, the “counterpart” of
xA,i

t is xB,i
t . We further denote the interactive observations

of zA,i
t at time t by zA,Jt

t where Jt = {jl1 , jl2 , . . .}. We de-
fine an object to have “interaction” when it touches or even
occludes with other objects in a camera view. The elements
jl1 , jl2 , . . . ∈ {1, . . . , M}, jl1 , jl2 , . . . �= i are the indexes
of objects whose observations interact with zA,i

t . In addition,
zA,J1:t
1:t represents the collection of interactive observation sets

up to time t.

We propose to estimate the posterior of an object in a
camera based on not only the interactive observations from
the same camera but also the counterpart observations from
all the other related cameras, i.e., p(xA,i

0:t |zA,i
1:t , zA,J1:t

1:t , zB,i
1:t ).

Three assumptions are made in derivation: (i) similar to [8],
[9], we assume observations in different time are independent,
both mutually and with respect to the dynamical process; (ii)
given an object’s state and observation in a particular camera,
its counterpart observations in other cameras are conditionally
independent with other objects’ observations in this camera
view; (iii) given an object’s state, the associated observations
in different cameras are conditionally independent.
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In the denominator of (2), densities p(zA,i
t |zA,i

1:t−1, z
A,J1:t
1:t , zB,i

1:t )
and p(zA,Jt

t , zB,i
t |zA,i

1:t−1, z
A,J1:t−1
1:t−1 , zB,i

1:t−1) are all unrelated to
xA,i, thus their product can be regarded as a constant kt. Ac-
cording to assumption (i), in (1) we make a simplification
p(zA,i

t |xA,i
0:t , zA,i

1:t−1, z
A,J1:t
1:t , zB,i

1:t ) = p(zA,i
t |xA,i

t , zA,Jt

t , zB,i
t ).

Similarly, we make simplifications in (3), (5) respectively by
assumption (i). In (6), we use the assumption (ii). From
(6) to (7), we have exploited the assumption (iii). In (7),
p(zA,i

t |xA,i
t ) is the local observation likelihood, p(xA,i

t |xA,i
0:t−1)

is the state dynamics. p(zA,Jt

t |xA,i
t , zA,i

t ) is the “interactive
likelihood” between the tracked object’s observation and its
interactive observations in the same camera similar to [2].
The main novelty of this paper is that we introduce an addi-
tional likelihood density p(zB,i

t |xA,i
t ) called a “camera col-

laboration likelihood” to characterize the collaboration be-
tween the same object’s counterparts in different views. When
not activating the camera collaboration for an object and re-
garding its projections in different views as independent, the
proposed framework can degrade to the IDMOT approach [2]
by switching p(zB,i

t |xA,i
t ) to a uniform distribution.

3. DENSITY ESTIMATION

We describe a particle filtering implementation [8] of the de-
rived Bayesian formulation in this section. A particle set
{xA,i,n

0:t , wA,i,n
t }Np

n=1 is employed to represent the posterior
p(xA,i

0:t |zA,i
1:t , zA,J1:t

1:t , zB,i
1:t ), where {xA,i,n

0:t , n = 1, . . . , Np} are
the particles, {wA,i,n

t , n = 1, . . . , Np} are associated weights
and Np is the number of particles. According to the sequential
importance sampling theory [8], considering the derived se-
quential iteration equation (7), if the particles xA,i,n

0:t are sam-
pled from the density p(xA,i

t |xA,i,n
0:t−1) which is modeled as a

Gaussian random walk, the corresponding weights are given
by

wi,n
t ∝ wi,n

t−1p(zA,i
t |xA,i,n

t )p(zA,Jt

t |xA,i,n
t , zA,i

t )p(zB,i
t |xA,i,n

t )
(8)

In (8), the local likelihood p(zA,i
t |xA,i,n

t ) can be calculated by
fusing object’s color histogram with a PCA-based model sim-
ilar to [3], [2]; The interactive likelihood p(zA,Jt

t |xA,i
t , zA,i

t )
can be estimated similarly by the “magnetic repulsion model”
presented in [2]; The camera collaboration likelihood can be
estimated by the model discussed as follows.

3.1. Camera Collaboration Likelihood Model

The proposed framework has no specific requirement of the
camera collaboration model as long as it can give a relatively

246



Object  j 
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Camera A Camera B 

Fig. 1. The model setting in 3D space for camera collaboration
likelihood estimation.

Fig. 2. Calculating the camera collaboration weights for object i in
view A.

good estimation of density p(zB,i
t |xA,i

t ). Here we present
a paradigm using particle filter implementation without re-
covering object’s 3D coordinates but only assuming cameras’
epipolar geometry is known.

Fig. 1 illustrates the model setting in 3D space. Two ob-
jects i and j are projected to two camera views. In view A,
the projections of object i and j are occluding while in view
B they are not. zB,i

t and zB,j
t are roughly estimated by do-

ing tracking in view B firstly. Then they are mapped to view
A, producing �(zB,i

t ) and �(zB,j
t ), where �(·) is a function of

zB,i
t or zB,j

t characterizing the epipolar geometry transforma-
tion. After that, the collaboration likelihood can be calculated
based on �(zB,i

t ) and �(zB,j
t ). Sometimes, a more compli-

cated case occurs, for example, object i is occluded with oth-
ers in both cameras. In this situation, the above scheme is
initialized by randomly selecting one view, say, view B and
using IDMOT to roughly estimate the observations. We do
admit these initial estimates may be not very accurate, there-
fore, in this case, we do iteration several times (usually twice
is enough) between different views to get more stable esti-
mates. According to Epipolar Geometry Theory [10, p.237-
259], a point in one camera view can find an epipolar line in
another view. Therefore, zB,i

t which is represented by a circle
corresponds to an epipolar “band” in view A, i.e., �(zB,i

t ).
Fig. 2 shows the procedure to calculate the collabora-

tion weight for each particle based on �(zB,i
t ). The parti-

cles {xA,i,1
t , xA,i,2

t , . . . xA,i,n
t } are represented by the circles.

Given the Euclidean distance dA,i,n
t = ‖xA,i,n

t − �(zB,i
t )‖

between the particle xA,i,n
t and the band �(zB,i

t ), the collab-
oration weight for particle xA,i,n

t can be computed as,

φA,i,n
t =

1√
2πΣφ

exp{− (dA,i,n
t )2

2Σ2
φ

} (9)

where Σ2
φ is the variance which can be chosen as the band

width. In Fig. 2, we simplify dA,i,n
t by a Point-Line distance

between the center of particle and the middle line of the band.
Furthermore, the camera collaboration likelihood can be ap-
proximated as follows:

p(zB,i
t |xA,i

t ) ≈
Np∑

n=1

φA,i,n
t∑Np

n′=1 φA,i,n′
t

δ(xA,i
t − xA,i,n

t ) (10)

where δ(·) is the Dirac delta function.

4. EXPERIMENTAL RESULTS

The performance of our approach has been demonstrated on
both synthetic and real-world data. We use a five dimension
parametric ellipse model including the center, size and orien-
tation parameters to represent an object’s state. Different col-
ors and numbers are used to label the objects. Without code
optimization, the C++ implementation runs stably at 8 ∼ 12
frames per second for the testing sequences on a 3.2GHz Pen-
tium IV PC.

We generate the synthetic videos by assuming two cam-
eras are widely set at right angle and at the same height above
the ground. Six soccer balls moves differently within the
overlapped scene of the two views. Various multi-object oc-
clusions are frequent when the objects are projected onto each
view. In Fig. 3, we compare the tracking results of (a) Mul-
tiple Independent Particle Filter (MIPF) [9], (b) IDMOT and
(c) the proposed approach. MIPF severely suffers from multi-
object occlusion problem. A lot of trackers are “hijacked”
by the objects with strong local observation and thus lose
their associated objects after occlusion. Equipped with mag-
netic repulsion and inertia models to handle the object inter-
action, IDMOT has improved the performance separating the
occluding objects and labeling them correctly for many ob-
jects. However, due to the intrinsic limitations of monocu-
lar video, it still has failure cases. By using bi-ocular videos
and exploiting camera collaboration, the proposed approach
tracks all the objects robustly. The epipolar line through the
center of a object is mapped from its counterpart in another
view and reveals when the camera collaboration is activated.

The sequence UnionStation is captured at a railway
station using two widely separated digital cameras with a res-
olution of 320 × 240 pixels and a frame rate of 25 frames
per second. The crowded scene has various persistent and
significant multi-object occlusions when pedestrians passing
by each other. Each view sequence consists of 697 frames.

247



(a)

(b)

(c)

C2 #286C1 #286

C2 #286C1 #286

C2 #286C1 #286

Fig. 3. Comparison of the tracking results on synthetic videos. (a)
MIPF; (b) IDMOT; (c) The proposed approach.

C2 #063C1 #063

Fig. 4. Tracking results of the sequence UnionStation.

The fundamental matrix of epipolar geometry is estimated by
using the algorithm proposed by Hartley and Zisserman [10,
p.79-308]. Fig. 4 shows the tracking results using the pro-
posed approach. It can be seen that objects are tracked ro-
bustly and assigned with correct labels even after persistent
and severe multi-object occlusions due to using both interac-
tion within each view and the camera collaboration between
different views. The only failure case occurs when two ob-
jects present occlusion in one view and there is no counter-
parts of these objects appearing in another view. In this sce-
nario, no camera collaboration is activated at all. By using
more cameras to cover the scene, such kind or failure cases
should be decreased.

Compared with the centralized approaches [6], whose com-
putational complexity increases exponentially with the num-

Table 1. Computation analysis in terms of the number of ob-
jects for the proposed approach

Objects 5 6 7

Particles 600 720 840

Speed (fps) 11 ∼ 12 9 ∼ 10 8.1 ∼ 8.6

ber of objects and cameras due to using a joint state repre-
sentation, the computational complexity of the proposed ap-
proach increases linearly in terms of the number of objects
and cameras. In table 1, we show the computation analysis
in terms of the number of objects for our approach. As we
can see, the requirement of the number of particles to achieve
reasonable robust tracking performance is increased linearly.
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