
PERFORMANCE OF OPTICAL FLOW TECHNIQUES ON GRAPHICS HARDWARE

Marko Durkovic, Michael Zwick, Florian Obermeier, Klaus Diepold

Lehrstuhl für Datenverarbeitung

Technische Universität München

Arcisstr. 21, 80333 München, Germany

ABSTRACT

Since graphics cards have become programmable the recent

years, numerous computationally intensive algorithms have

been implemented on the now called General Purpose Graph-

ics Processing Units (GPGPUs). While the results show that

GPGPUs regularly outperform CPU based implementations,

the question arose how optical flow algorithms can be ported

to graphics hardware. To answer the question, the optimal

algorithm structure to maximize the performance gained by

using graphics cards has to be found.

In this paper we compare the performance of two algo-

rithms that are highly different in structure, implemented on

both CPU and graphics hardware. Analyzing the results of

the CPU and GPGPU implementation, we explore the map-

ping of the algorithms to the graphics hardware and thereof

extract information about a preferred structure of optical flow

algorithms for GPGPU based implementation.

1. INTRODUCTION

General Purpose Graphics Processing Units (GPGPUs) have

undergone an enormous evolution lately. Reaching manufac-

turing limitations, graphics processor designers concentrated

their efforts on enhancing performance by parallelizing their

architecture instead of just raising clock speed. As an out-

come, today’s graphics processors implement up to 24 paral-

lel pixel pipelines and this number will increase further.

Due to the fierce competition in the graphics processing

market, graphics processor manufacturers were forced to out-

perform their competitors by fancy add-ons, which led to the

implementation of programmable pixel and vertex pipelines.

Actually introduced to offer highly flexible graphics proces-

sors to game developers, other fields soon discovered the pro-

grammable and highly optimized now called General Pur-
pose Graphics Processing Units for their applications.

Simply comparing the number of execution units of an

up-to-date GPGPU to those of a CPU demonstrates the com-

putational power of modern GPGPUs: 8 vertex and 24 pixel

pipelines with 2 execution units each, resulting in 64 GPGPU

execution units versus 8 execution units of up-to-date Desk-

top CPUs (including SSE or AltiVec units).

Taking into account that every GPGPU execution unit

operates on 4 dimensional vectors boosts the superiority of

GPGPUs to a theoretical factor of 64 · 4/8 = 32, assuming

that CPU and GPGPU manufacturers both squeezed out per-

formance from gate delays equally well.

To analyze the performance gain achieved in practice, we

implemented two well known gradient based optical flow al-

gorithms, namely those of Horn and Schunck (H&S) [1] and

Lucas and Kanade (L&K) [2] on both a CPU (AMD Athlon64

3500+, 512 kB Cache, 2 GB RAM) and a GPGPU (Nvidia

GeForce 6800 Ultra) and tested them with some video se-

quences. Both algorithms were implemented with the modi-

fications proposed by Barron et al. [3].

Barron’s results and the continous popularity of the

choosen algorithms justify their selection despite their age.

They differ in the constraint necessary to calculate the motion

component orthogonal to the direction of the gradient. More

recent proposals such as [4] focus rather on enhancing this

constraint than starting from ground up. To that end they tend

to base their considerations on Lucas and Kanade. Insofar it is

valid to compare the constraints’ influence on the achievable

performance gain using GPGPUs.

Results are presented in Chapter 2 and analyzed in Chap-

ter 3.

2. RESULTS

We measured the execution times of our implementations and

normalized them to a number of 100 frames. Afterwards we

calculated the relative performance gain

Prel =
Execution time CPU

Execution time GPGPU
(1)

achieved by a GPGPU based implementation compared to a

CPU based one (table 1).
The test sequence blue_sky can be downloaded from

ftp://ftp.e-technik.tu-muenchen.de/pub/testsequences, Fore-

man is an MPEG-4 test sequence [5], while all other

mentioned test sequences are identical to the ones used in

[3]. The resolution of each test sequence is given in table 1.

Figure 1 prints out the relative performance gain with re-

spect to the resolution of the test sequences. Since GPGPU

and CPU implementations produce identical vector fields,

2411424403677/06/$20.00 ©2006 IEEE ICME 2006

||tL&K||100 ||tH&S||100 Prel,L&K Prel,H&S

G 16.00 460.04

C 198.41 1276.78

G 0.87 23.49

C 10.13 64.65

G 1.57 20.86

C 9.59 59.41

G 1.86 15.62

C 6.76 39.93

G 1.85 12.39

C 5.65 32.86

G 1.48 3.67

C 2.28 6.09

Rubic

256x240
3.63

2.75

2.85

11.64

6.11

Foreman

352x288

Nasa

300x300

1.66

Blue_sky

1920x1080
12.40 2.78

Square2

100x100
1.54

2.56

Taxi

256x190
3.05 2.65

Table 1. Execution times and relative performance gains.

correlating GPGPU execution time to CPU execution time

yields an appropriate performance measure.

Please note, that the optical flow fields we obtained

matched those of [3]. For comparision in accuracy refer to

that paper and [6].

Square2
10,000

Taxi
48,640

Rubic
61,440

Nasa
90,000

Foreman
101,376

Blue_sky
2,073,600

Lucas & Kanade

Horn & Schunck

Prel

resolution
[pixel]

12.40

2.85

Fig. 1. Execution times and relative performance gain.

Analyzing the results given in table 1 and figure 1 we re-

alized the following:

1. Lucas and Kanade’s algorithm achieves a much higher

performance gain (a factor of about 4.5 for high resolu-

tions) than Horn and Schunck’s Algorithm does.

2. The performance gain of Horn and Schuck’s algorithm

quickly reaches a kind of saturation and doesn’t exceed

2,85.

3. The implementation of Lucas and Kanade’s algorithm

behaves in a quite different way: The performance gain

increases exponentially with resolution, as long as the

image size doesn’t exceed CIF format. For higher reso-

lutions the performance gain of Lucas and Kanade’s al-

gorithms saturates as well and does not exceed a value

greater than 12.40 at 1080p (1920 x 1080).

3. ANALYZING THE RESULTS

In the following section we analyze the behavior of the per-

formance gain.

3.1. Higher performance gain of Lucas and Kanade’s al-
gorithm compared to Horn and Schunck’s algorithm

The higher performance gain of Lucas and Kanade’s algo-

rithm can be explained by the structure of the algorithm: Lu-

cas and Kanade’s algorithm allows a highly parallel process-

ing using the GPGPU’s parallel pixel shaders, while Horn and

Schuck’s algorithm is an iterative one and therefore not a good

candidate for parallelizing.

Horn and Schunck calculated the velocity field v(x, t) =
[u(x, t), v(x, t)]T by minimizing

∫
R

(∇I · v + It)2 + λ2(‖∇u‖2
2 + ‖∇v‖2

2)dx (2)

within a region R, where I = I(x, t) depicts the intensity

of the pixel at position (x, y) at the time t and ∇I the spa-

tial gradient
[

∂I
∂x

∂I
∂y

]T

; λ is a smoothness factor [3]. This

minimization is commonly referred to as global smoothness
constraint.

According to [3] we determined v in (2) iteratively by

un+1 =
un − Ix · (Ixun + Iyvn + It)

α2 + I2
x + I2

y

(3)

vn+1 =
vn − Iy · (Ixun + Iyvn + It)

α2 + I2
x + I2

y

. (4)

In order to achieve the high performance offered by

graphics hardware, equations (3) and (4) have to be parti-

tioned into blocks that can be executed in parallel. Due to

architectural constraints, parallel processes can not share tem-

poral data or results with each other. Therefore, sharing re-

sults requires the setup of a new render cycle introducing

overhead.

Since un and vn are calculated from neighbouring values,

every iteration step requires a separate render cycle. By writ-

ing the results of each rendering cycle into a texture, they are

made available to all shaders in the following iteration.

We calculated the derivates Ix and Iy not in the way pro-

posed by Horn and Schuck [1] but rather chose the 4-point

central differences with mask coefficients 1
12 (−1, 8, 0,−8, 1)

as it was done by Barron, Fleet and Beauchemin [3]. We

calculated the derivates for every pixel and stored them as

illustrated in figure 2 in a texture referred to as Deriva-
tives_Texture. Storing data in textures is the common way

to supply pixel and vertex shaders with required data.

242

frame i

frame i+1

frame i+2

frame i-1

frame i-2

Ix
Iy
It

0.0
Derivatives_Texture

-1/12

8/12

-8/12

1/12

1/12

-8/12

Fig. 2. Calculation of the derivates.

For the same reason we generated a second texture re-

ferred to as Vels_Texture to store the computed velocities.

Starting with an estimation of u0 = v0 = 0.0 we itera-

tively (100 times) first smoothed the actual Vels_Texture by

applying the filter shown in figure 3 to achieve uk and vk.

1/6

1/12 1/6

1/6

1/6

1/12

1/121/12

0

Fig. 3. Filter for smoothing the calculated velocities.

Afterwards we calculated uk+1 and vk+1 by

⎡
⎢⎢⎣

uk+1

vk+1

#
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

uk

vk

1.0
0

⎤
⎥⎥⎦ −

[uk, vk, 1.0, 0.0]

⎡
⎢⎢⎣

Ix

Iy

It

0.0

⎤
⎥⎥⎦

[Ix, Iy, α, 0.0]

⎡
⎢⎢⎣

Ix

Iy

α
0.0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Ix

Iy

It

0.0

⎤
⎥⎥⎦ , (5)

whereas # denotes an irrelevant value.

Although (5) is a nice vector equation and therefore

might be ideally suited for GPGPU calculation (and executes

thereon indeed up to 2.85 times faster compared to a CPU),

the calculation has a severe disadvantage compared to Lucas

and Kanade’s algorithm: The high number of 100 iterations

makes the performance suffer from overhead. Every time the

loop iterates to calculate vk+1 from vk the GPGPU’s internal

control registers have to be setup. This is due to the fact that

the source and the target textures are switched before another

iteration as demonstrated by figure 4.

Unlike Horn and Schuck’s algorithm Lucas and Kanade’s

solution is not an iterative one and therefore does not suffer

from the afore mentioned expensive overhead. The solution

to Lucas and Kanade’s minimization problem ([2], [3])

∑
x∈Ω

W 2(x)[∇I(x, t) · v + It(x, t)]2, (6)

is simply obtained by

v = M−1B, (7)

where M depicts the 2 × 2-matrix

M =
[
ΣW 2(x)IxIx ΣW 2(x)IxIy

ΣW 2(x)IyIx ΣW 2(x)IyIy

]
(8)

and B the twodimensional vector

B=

⎡
⎢⎣
∇I(x1)

...

∇I(xn)

⎤
⎥⎦

T⎡
⎢⎣

W (x1)
. . .

W (xn)

⎤
⎥⎦
⎡
⎢⎣
−It(x1)

...

−It(xn)

⎤
⎥⎦. (9)

Equation (7) is also known as local smoothness con-
straint.

Determining Ix, Iy and It in the same way as depicted

in figure 2, we created two textures Texture_Ixy and

Texture_Ixyt. In every pixel of Texture_Ixy we stored the

associated 4 element vectors [IxIx, IxIy, IyIx, IyIy]T and in

Texture_Ixyt the associated vectors [IxIt, IyIt, IxIt, IyIt]T .

According to [7] we applied a twodimensional weight-

ing function with the kernel elements 1
16 (1, 4, 6, 4, 1) on these

textures. This was done in the same manner as the spatial (not

temporal) filtering of frame i in figure 2.

Derivates_Texture
Pixel

Shader

0000

Pixel
Shader

vvvv2

vvvv1vvvv1

Pixel
Shader

vvvv3

vvvv2

Vels_Texture is target

Vels_Texture is source

Vels_Texture is target

Vels_Texture is source

Fig. 4. Switch between source and target texture.

After the filtering process every pixel of Texture_Ixy

contains in its 4 element vector the matrix elements

243

M[0, 0],M[0, 1],M[1, 0] and M[1, 1], i.e. the complete ma-

trix M. Accordingly, Texture_Ixyt contains the matrix B.

Calculating M−1 by

M−1 =
1

detM

[
M[1][1] −M[1][0]

−M[0][1] M[0][0]

]
(10)

makes it possible to calculate v as a sequence of matrix-

vector-operations that have to be executed for every pixel

only once and not iteratively as it was done by the algorithm

of Horn and Schunck. Therefore there is no overhead from

iteratively setting up the GPGPU’s control registers, which

makes Lucas and Kanade’s algorithm by far the better choice

for GPGPU based implementations.

3.2. Performance gain saturation and cache influences

For small resolutions, the achievable performance gain of a

GPGPU implementation is comparatively small for both al-

gorithms. This is due to the relatively high overhead, which is

caused by setting up new render cycles and the data transfers

from RAM to GPGPU. For increasing resolution, the frac-

tion of time to handle the overhead diminishes and the perfor-

mance gain becomes more significant.

Above that, the CPU performance is closely related to its

cache hit rate. While the resolution stays small, the hit rate is

high. For higher resolutions the amount of memory accesses

gets boosted resulting in a disproportionate set back of CPU

performance. Once the CPU is in saturation, it can not benefit

from its cache any further. In contrast, the GPGPU could not

profit from its very small texture cache in the first place, so

that it is not affected by such a kind of performance break-

down.

Once the resolution exceeds a specific limit, the execution

times the CPU, respectively the GPGPU require for optical

flow computation, nearly scale linearly. From there, the rela-

tive performance gain of the GPGPU implementation almost

remains the same for further increasing resolutions (figure 1).

Our implementation calculates four optical flow fields

per second for 1080p on the described hardware. Most re-

cent GPGPUs are equipped with 48 pixel pipelines and up

to four of these units can be employed in one computer si-

multanously. The resulting amount of 192 pixel pipelines

is 12 fold what we used, each running at a higher clocking

frequency. Further optimization and use of state of the art

hardware will allow real-time computation of optical flow for

1080p image resolution.

4. CONCLUSION

This report presents a way to compute optical flow on Gen-

eral Purpose Graphics Processing Units. Our investigations

proved that optical flow can be computed on GPGPUs. With-

out loosing accuracy, the optical flow is obtained in a fraction

of the execution time of a CPU implementation.

Because of its non-iterative structure, the algorithm of Lu-

cas and Kanade is particularly suitable. Compared to the local

smoothness constraint of Lucas and Kanade the performance

penalty imposed on Horn and Schunck’s algorithm1 by the

global smoothness constraint is already known to be signifi-

cant in straight-forward CPU implementations. The situation

gets worse, when both algorithms are ported to a GPGPU: the

execution time of Lucas and Kanade’s algorithm could be re-

duced to less than 1/12, compared to more than a 1/3 for the

algorithm of Horn and Schunck.

Making use of the tremendous processing power of mod-

ern parallel hardware allows for more sophisticated con-

straints as well as additional steps, such as pre- and postpro-

cessing, formerlly considered too expensive.

5. ACKNOWLEDGMENT

The authors would like to thank NVIDIA Germany for their

contribution of a NVIDIA GeForce 5900 for our first steps in

GPGPU programming.

6. REFERENCES

[1] B. K. P. Horn and B. G. Schunck, “Determining optical

flow,” Tech. Rep. A.I. Memo No. 572, Massachusetts In-

stitute of Technology, Artificial Intelligence Laboratory,

April 1980.

[2] B. D. Lucas and T. Kanade, “An iterative image regis-

tration technique with an application to stereo vision,”

in Proceedings of Image Understanding Workshop, 1981,

pp. 121–130.

[3] J.L. Barron, D.J. Fleet, and S.S. Beauchemin, “Perfor-

mance of optical flow techniques,” International Journal
of Computer Vision, vol. 12, no. 3, pp. 43–77, 1994.

[4] M. Irani, “Multi-frame correspondence estimation using

subspace constraints,” International Journal of Computer
Vision, vol. 48, pp. 173–194, 2002.

[5] T. Alpert, V. Baroncini, L. Choi, D. Contin, R. Koenen,

F. Pereira, and H. Peterson, “Subjective evaluation of

mpeg-4 video codec proposals: Methodological approach

and test procedures,” in Signal Processing: Image Com-
munication 9, 1997, pp. 305–325.

[6] B. Galvin, B. McCane, K. Novins, D. Mason, and

S. Mills, “Recovering motion fields: An evaluation of

eight optical flow algorithms,” 1998.

[7] Adelson E. H. Simoncelli E. P. and Heeger D. J., “Proba-

bility distributions of optical flow,” IEEE Proc. of CVPR,

pp. 310–315, 1991.

1severely influenced by limited memory bandwidth

244

