
Locally Refined Collision Detection of Large Scale Complex Polygonal Meshes in
Distributed Virtual Environments

Peiran Liu, Nicolas D. Georganas

University of Ottawa

[peiran, georganas]@discover.uottawa.ca

Gerhard Roth

National Research Council of Canada

Gerhard.Roth@nrc-cnrc.gc.ca

Abstract

This paper presents a new locally refined collision detection
approach for large scale complex meshes in distributed virtual
environments (DVEs) where exact and interactive interference
detection is required. Transmitting models with millions of
polygons is time consuming in comparison with transmitting

simple models. Even if the models are transmitted in progressive
manner, the earlier received models are in low level-of-detail
(LOD) because the models are refined globally. Increasing the
accuracy of collision detection (CD) at the client still takes time
because increasing the LOD of the model is a slow process. The
new approach is composed of an AB-tree collision query algorithm
and a new mesh refinement algorithm on a space partitioned mesh
(SPM) representation. It deals with this problem by selectively

refining the models at certain areas that are predicted to collide
with other objects and transmitting the refined parts instead of the
entire model from server to client. The accuracy of CD is increased
quickly at the predicted contact areas. An interactive rate is
guaranteed by reducing network response time and dynamically
adjusting the complexity and the space cost of the collision query
algorithm.

Keywords: Multi-resolution mesh, bounding volume hierarchy,

collision detection, distributed virtual environment.

1. Introduction

A distributed virtual environment (DVE) is a network-based multi-
user VR system where participants navigate in synthetic space and
see, meet and interact with other users and computers. Two main
approaches have been proposed for DVEs to distribute virtual
objects from servers to clients. Complete replication is an approach

to distribute geometry data to the clients before the simulations are
started. This approach assumes the use of high-speed networks to
transmit the usually large volume of data. On-demand transmission
is another approach to distribute the data to the clients at runtime.
This approach requires the transmission of only the visible region
of the virtual environment to the clients, which reduces startup
time and optimizes network usage. The visible objects need to be
retrieved from the server in advance so that they are available
whenever the clients need them. However, there is a problem of

maintaining an interactive rate at the clients. It has been solved by
scheduling methods [1] and by pre-fetching and caching methods
[2]. These solutions only focused on providing continued viewing
service of the virtual environments. However, dynamic simulation,
especially the issue of interactive and accurate collision detection

over the distributed environment, is not tackled in the
abovementioned works.

In this paper, we present a new approach, “locally refined collision
detection”, based on a form of bounding volume hierarchy. The
new approach applies to large scale complex models, such as
terrain models, where the collision typically occurs in a small area
of the entire mesh surface. The main idea of the approach is to
refine the meshes locally where collisions are most likely to occur.
In a flight simulation, for instance, as an aircraft flies over a terrain
mesh, the regions near the aircraft which are at high risk of

collision would be selected to refine to higher resolutions. The
major benefit of this approach is that the other regions of the mesh
may not be required by the collision detection (CD) algorithm.
Therefore for complex models only a small portion of the data
needs to be loaded from server to client. This can significantly
reduce network traffic, offload the workload of the server, and
accelerate simulation at the client. In addition, the accuracy of CD
is increased when collisions occur in the selected regions of the

meshes. When relative position and orientation among objects
change, the selected regions are changed dynamically. The un-
selected regions only need to be refined to the coarsest resolution.
Thus, when refinement data can not be received by the client in
time, CD is still supported although in a low accuracy.

Contributions: A framework for exact and interactive CD on large
scale complex model in distributed virtual environments (DVEs) is
presented. A multi-resolution mesh representation SPM is defined
to fulfill the requirement of local mesh refinement. A refinement
criteria involving time and space coherence is presented. An
efficient mesh refinement algorithm on the SPMs is presented. Its
correctness is proved. An effective BVH CD algorithm (“AB-
tree”) is applied to the proposed multi-resolution progress meshes.

2. Related Work

In this section, we provide a brief review of multi-resolution
meshes and collision detection methods. Then we justify the
importance of our work and how it differs and improves on the
work of others.

2.1 Multi-resolution Meshes

Multi-resolution mesh simplification creates a data structure that
can be employed to dynamically produce a mesh with any desired
resolutions lying between the highest and the lowest number of

2091424403677/06/$20.00 ©2006 IEEE ICME 2006

polygons from the original mesh at run-time. Some multi-
resolution mesh simplification algorithms refine or simplify
meshes globally based on the distance to the view point and
projected area on the screen. They are called continuous LOD [3,
4]. Continuous LOD allows a geometric model to be efficiently

delivered over a network in a progressive manner. Compared to
continuous LOD representations, view-dependent LOD
representations have better granularity. They allocate polygons
where they are most needed, within as well as among objects,
therefore enabling even better fidelity in graphics rendering. They
enable drastic simplification of very large objects, such as the
stadium models and terrain models. Recent works on view-
dependent simplification take into account viewing parameters in

mesh simplification to speed-up graphics rendering further [5, 6, 7,
8].

2.2 Collision Detection

Collision detection is considered to be one of the major bottlenecks
in building interactive and realistic virtual environment. Some

recent surveys of the works for CD can be found in [9, 10]. Most
of CD algorithms support static LOD, which means that the mesh
geometry and topology are static at runtime. In DVEs, they are
predetermined by the lowest available network bandwidth and the
accuracy of CD required by the application. A few recent works
have been focused on using multi-resolution representations in CD
[11, 12, 13]. The above mentioned algorithms do not support
progressive transmission of the models over the network. No good
real-time collision detection systems are known for distributed and

interactive virtual environments, especially those composed of
large scale complex models. We are seeking to overcome the
shortcoming of the existing strategies and propose new strategies
to speed up collision detections in the context of distributed virtual
environment.

3. Locally Refined Collision Detection in

DVEs

A collision detection progressive mesh (CDPM) representation and
a globally refined collision detection approach applying to the
meshes in DVEs are introduced in [16]. One problem of the
approach is that collision queries only apply to globally refined
meshes. The resolutions of the meshes cannot be adjusted locally
in specified regions on the surface model. The complexity of a

BVH collision query algorithm is mainly determined by the
number of BV overlap tests while the accuracy of a collision
detection algorithm is determined by the resolution of the meshes
at contact location. The proposed local refinement collision
detection is a deviation of the CDPM CD approach which supports
fast and accurate CD on large scale complex models in distributed
environments. Vertex split records for local refinement of specified
areas of the mesh are subscribed by the client and collected and

sent by the server. Only those parts of the mesh that are most likely
to collide with other objects are refined to full resolution at
runtime. This means that the input size of the collision detection
process does not changed significantly when the meshes are locally
refined. When a comparable accuracy is achieved on the same
large model, the locally refined collision detection approach runs
faster than the globally refined approach.

3.1 Collision Detection Framework

The framework allows fast and exact interference detection that
adapts to local surface mesh refinement and progressive
transmission in distributed virtual environments. The framework
consists of two parts: server and client. The server is responsible

for transmitting base meshes, collecting and transmitting legal
vertex split records for local refinement upon requests from the
clients. The client is responsible for determining when and where
to do local refinement based on a region selection function,
sending refinement parameters (indices of certain regions in space
that are occupied by the meshes) to the server, receiving vertex
split records from the server, performing refinement, building and
refitting BVHs of meshes, performing collision queries. The CD

algorithm at a client has two phases, preprocessing phase and
runtime phase. In the preprocessing phase, the size of the
transmitted mesh data is relatively small compared to that of the
entire mesh. The structure of AB-Trees for collision query is
encoded in the SPMs which saves the time for BVH construction.
Therefore, the cost of running the first phase is negligible. In the
runtime phase, the algorithm estimates the time it spends per frame
on collision detection, which is determined by the application’s

performance goals and the set of activities it performs at each
frame. Initially AB-trees are built on the coarsest meshes. Then
some mesh primitives are locally refined to higher resolution based
on the configuration of the objects in space. Then, the AB-tree
BVHs of the models are refitted. Finally, pair wise collision
queries are performed on the models.

3.2 Collision Prediction

SPM models are generated through a space partition process. An
object in a scene is fitted by a bounding box. The 3D space of the

Figure 1 Illustration of space partitioning a
polygonal model into 8x8x8 3D grids

x

y

z

{1}

{8x8x8}

Figure 2 Illustration of a base mesh M0, a full mesh Mn

and a locally refined mesh Mi for SPM. Mi is generated by
a sequence of VSPs in a selected order

210

bounding box is partitioned evenly into smaller indexed boxes. A
refinement criterion is required to adapt mesh refinement when
relative configurations among objects are changed. As a result,
more and more regions indices are reported at runtime, and more
parts of the meshes are refined.

Temporal and spatial coherence: Frames in an interactive
viewing session typically exhibit only incremental shifts in contact
local neighbor, so the number of potential contact regions remains
roughly small and constant. Linear and quadratic extrapolation is
considered to be at the heart of the best techniques for spatial

motion prediction which requires the recording of the contact
regions in previous frames. A simpler solution is to take the local
neighbors on contact regions in the current frame as the contact
regions for the next frame.

3.3 Space Partitioned Meshes and Selective Refinement Algorithm

The proposed SPM modeling method uses the Progressive Mesh

[17] and the Quadric Error Metrics (QEM) [14]. The QEM is a
method we use to efficiently generate SPM from traditional
triangle meshes in arbitrary topology by performing two
operations, vertex split (VSP) and its reverse, edge collapse
(ECOL). A vertex split operation splits one vertex vs to two new
vertices vu and vt, and adds at most two new faces fl and fr. SPMs
represent manifold triangle meshes. A SPM can be streamed over
network by progressively transmitting VSPs in sequence. The

format of the SPM is similar to CDPM. The major difference is the
index list of space partitioned regions in the SPM header. In order
to do selective mesh refinement, an AABB BV is calculated for the
original mesh. The BV is evenly space partitioned to 3D grids as
illustrated in Figure 1. Each grid is indexed based on the
coordinates of the partitioning planes along the axes of the BV.
The index list helps the server to collect VSP records that are used
by the client to locally refine selected regions on the current mesh.

At the client the SPM multi-resolution data structure is composed
of a vertex hierarchy and a sequence of performed VSPs. The
vertex hierarchy is a forest as illustrated in Figure 2. The hierarchy
not only contains information about the geometry and topology of
the model in a continuous LOD but also records the history of
vertex split and edge collapse operations on the multi-resolution

mesh, which enables fast mesh split and merge. The leaf nodes are

extended dynamically upon receiving vertex split records. A leaf
node can extended to have two children to split the leaf’s
represented vertex into two vertices and generate new faces in the
mesh. On the other hand, the extended nodes can be folded into
their parent to collapse the split two vertices to one and removed

the generated faces from the mesh. The sequence of performed
VSPs is designed to record the order the vertices represented by the
nodes in the hierarchy are split and to quickly locate the nodes on
the hierarchy to be folded or unfolded.

In a distributed environment, tasks at the client include collision

prediction, collision region VSPs subscription, receiving VSPs
data, SPM multi-resolution refinement, and collision queries [15].
The AB-tree collision query algorithm has the characteristic that it
receives all the refined faces in the current frame no matter
whether the meshes are refined globally or locally. The
fundamental mesh refinement operations associated with the SPM
multi-resolution data structure are Local Edge Collapse and Local
Vertex Split. Local Vertex Split is performed when the predicted

collision regions are different from current collision regions. It
collects all required VSPs from the index list of partition regions in
the received mesh header. Then for each collected VSP, if the legal
conditions introduced in [6] are satisfied, the VSP is performed on
the hierarchy. Otherwise, a set of ECOLs and VSPs are collected
and performed to make the VSP legal. This operation is a recursive
process which performs all necessary VSPs and ECOLs to refine
the predicted regions to the highest LOD. It terminates when all
vertices in the predicted regions on the mesh become active. Local

Edge Collapse is performed when the current collision regions are
predicted not to collide in the next frame. This operation is another
recursive process which performs all necessary VSPs and ECOLs
to refine the current collision regions to the lowest LOD. Both
operations update the AB-tree BVH for collision query if the mesh
is refined.

Tasks at the server include loading mesh header and base mesh of
subscribed models from secondary storage to main memory,
receiving collision regions index list from the client, collecting
VSPs required for mesh refinement, sending the collected data to
the client. The fundamental operation associated with the SPM
multi-resolution data structure is Server Collect VSplits which
collects VSPs required for mesh refinement. This operation is a

simple case of Local Vertext Split which does not consider edge
collapse operations because the mesh maintained by the vertex
hierarchy at the server is never refined to lower LOD. The proof of
correctness of the local refinement algorithm is given in [16].

4. Conclusion

The configuration of benchmark models and simulation results are
given in table 1 and 2. Upon receiving mesh refinement data at the
client, time for collision detection can be expressed as

LQBR TTTTT +++=
where TR represents the time for mesh refinement, TB represents
the time for AB-tree BVH refitting, and TQ represents the time for
collision queries on the BVH. TL is the time for mesh loading.
Assuming that the collision query frame rate is fixed, TL is
proportional to the number of vertex split records loaded per frame.

The performance of the proposed locally refined collision detection
is slightly affected by the network bandwidth and the movement of

Figure 3 Illustration of locally refined collision detection

211

models. However, the initial waiting time at a client is significantly
reduced. We propose to segment one heavy computing task into
many subtasks. The subtasks in the client are performed in parallel
with the tasks in the server through the network. Even when only a
small portion of mesh data is received, the accuracy of the collision

detection is as high as that can be obtained by performing collision
queries on meshes in full resolution. From end users’ point of
view, they can start running a highly realistic and interactive
virtual environment application instantly without waiting for the
whole scene to be received.

The AB-tree BVH collision detection, the SPM representation, and
the framework for locally refined collision detection in DVEs
presented in this paper are successfully integrated. A prototype
application has been developed in a distributed setting to
demonstrate the feasibility of the framework. A screenshot is
provided in Figure 3. The performance is studied both analytically
and by measurements. The proposed approach can significantly
improve existing collision detection methods in distributed virtual

environments especially in those that involves large scale complex
models in low bandwidth networks where exact and real-time
interference detection in required.

Acknowledgments

I am grateful to the LORNET NSERC Research Network for
supporting this research.

References

[1] W. Wong and R. Muntz, Providing Guaranteed Quality of

Service for Interactive Visualization Applications. In Proc. ACM
SIGMETRICS, June 2000.

[2] J. Chim, R.W.H. Lau, H.V. Leong, and A. Si, Cyber Walk: A
Web-based Distributed Virtual Walkthrough Environment. IEEE
Transactions on Multimedia, Vol.5, No.4, Dec. 2003, pp.503-515.

[3] M. Gross, O. Staadt, and R. Gatti, Efficient Triangular Surface
Approximations using Wavelets and Quadtree Structures. IEEE
Transaction on Visual and Computer Graphics, 2(2), 1996, pp.130-

144.

[4] N. Molino, Z. Bao, and R. Fedkiw, A Virtual Node Algorithm
for Changing Mesh Topology During Simulation. ACM

Transactions on Graphics (TOG), vol. 23, no.3, August, 2004, pp.
385-392.

[5] J. Xia, J.El-Sana, and A. Varshney. Adaptive Real-time Level-
of-Detail Based Rendering for Polygonal Models. IEEE
Transactions on Visualization and Computer Graphics, vol.3, no.2,

Jun. 1997, pp. 171-183.

[6] H. Hoppe, View-dependent refinement of progressive meshes.
In Proc. ACM SIGGRAPH’ 97, August 1997, pp.189-198.

[7] D. Luebke and C. Erikson. View-Dependent Simplification of
Arbitrary Polygonal Environments, In Proc. SIGGRAPH’ 97,
August 1997, pp. 199-208.

[8] C. Touma and C. Gotsman, Triangle Mesh Compression. In
Proc. Graphics Interface '98, June, 1998, pp. 26-34.

[9] P. Jiménez, F. Thomas, and C. Torras, Collision Detection: A
Survey. Computers and Graphics, Vol. 25, No. 2, pp.269-285,
2001.

[10] M. Lin and S. Gottschalk. Collision Detection between
Geometric Models: A Survey. In Proc. IMA Conference on
Mathematics of Surfaces, 1998, pp. 37-56.

[11] D.K. Pai and L.M. Reissel, Haptic Interaction with
Multiresolution Image Curves. Computer and Graphics, 21, 1997,

pp. 405-411.

[12] J. El-Sana and A. Varshiney, Continuously-adaptive Haptic
Rendering. In Proc. Virtual Environments, 2000, pp. 135-144.

[13] M. A. Otaduy and M. C. Lin, CLODs: Dual Hierarchies for
Multiresolution Collision Detection. In Proc. Eurographics
Symposium on Geometry Processing, Aachen, Germany, 2003, pp.
94-101.

[14] M. Garland and P.S. Heckbert, Surface Simplification using

Quadric Error Metrics. In Proc. SIGGRAPH, 1997, pp.209-216.

[15] P. Liu, N.D. Georganas, and G. Roth, Handling Rapid
Interference Detection of Progressive Meshes Using Active
Bounding Trees. Journal of Graphics Tools, accepted for
publication in 2005.

[16] P. Liu, Progressive Transmission and Multi-resolution
Collision Detection of Polygonal Meshes in Virtual Environments.
Ph.D thesis, University of Ottawa, 2006.

[17] H. Hoppe, Progressive Meshes. In Proc. SIGGRAPH'96,

1996, pp. 99-108.

Table 1 Parameter Settings for Models

Models #faces in Mn

(Original Mesh)
#vertices in Mn

(Original Mesh)
#faces in M0

(Base Mesh)
#vertices in M0

(Base Mesh)
#vertex split
records

AB-tree
height

Sphere 496 2050 50 27 2023 12

Bunny 37576 20000 500 1406 18594 16

Table 2 Performance Statistics for CD

Model TQ for original
mesh in static
LOD

TQ for base
mesh in static
LOD

TQ for SPM with
local refinement

TB for SPM with
local refinement

TR for SPM with
local refinement

Sphere 0.19ms 0.03ms 0.09ms 0.30ms 0.21ms

Bunny 0.42ms 0.05ms 0.35ms 1.80ms 5.40ms

212

