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ABSTRACT

Given a number of available layers of source data and a
transmission bit budget, we propose an algorithm that de-
termines how many layers should be sent and how many
protection bits should be allocated to each transmitted
layer such that the expected distortion at the receiver is
minimum. The algorithm is used for robust transmission
of progressively compressed 3D models over a packet
erasure channel. In contrast to the previous approach,
which uses exhaustive search, the time complexity of our
algorithm is linear in the transmission bit budget.

1. INTRODUCTION

The robust transmission of multimedia data over unreli-
able networks can be achieved with forward error correc-
tion, ARQ protocols, error resilient encoding, error con-
cealment techniques, or any combination thereof. While
many systems were proposed for images and video (see
the surveys [1, 2]), only a few [3, 4, 5] were dedicated to
3D graphic models.

In this paper, we focus on the system of [5], which is
the only one based on forward error correction. This sys-
tem starts by compressing the 3D model with a progres-
sive compression scheme to one base layer and a number
of update layers. This can be done, for example, with
the Compressed Progressive Meshes (CPM) coder [6].
Then each layer is protected by applying forward error
correction and sent over the channel in a block of packets
(BOP) consisting of information symbols and protection
symbols. Given a total transmission bit budget, the per-
formance of the system is optimized by finding the num-
ber of layers that should be transmitted and the number
of protection symbols allocated to each transmitted layer
such that the expected distortion at the receiver is mini-
mum. To solve this optimization problem, Al-Regib et al.
[5] use exhaustive search whose complexity is reduced by
constraining the number of protection symbols assigned
to a given layer to be greater than or equal to the num-
ber of protection symbols assigned to the next layer. We
show that this monotonicity constraint on the number of
protection symbols can lead to poor performance and pro-
pose a dynamic programming algorithm that solves the
unconstrained optimization problem in linear time and
space. Our algorithm is inspired from the algorithm of
[7]. However, there are important differences between
the two algorithms. First, the algorithm of [7] was de-
veloped for embedded source bitstreams, which can be
decoded regardless of the number of received symbols.
In contrast, the source coder in the system of [5] allows

the decoding only at a given number of truncation points,
each of which corresponds to a layer. Second, the packet
size is fixed a priori in [7], while it can vary with the BOP
in [5]. Third, the number of information symbols allo-
cated to a BOP is variable in the system of [7], whereas it
is fixed in the system of [5]. Fourth, the number of trans-
mitted BOPs is fixed in [7], whereas it must be optimized
in [5]. Finally, our algorithm has linear time and space
complexity, while the algorithm of [7] has quadratic time
and space complexity.

2. PREVIOUS WORK

Consider a 3D model progressively compressed to M

layers consisting of one base layer and M − 1 update
layers. To decode a given layer, all information sym-
bols in this layer and in the previous layers must be avail-
able. Let sj denote the number of symbols (for example,
bytes) in the jth layer (j = 1, . . . , M). For j = 1, . . . , L

(1 ≤ L ≤ M ), the jth layer is packetized into a group
of kj horizontal information packets of size mj symbols
each. Then the same systematic Reed-Solomon code (or
shortened Reed-Solomon code) of length N is applied
vertically on each of the mj groups of kj information
symbols, yielding a BOP consisting of N channel pack-
ets of size mj symbols each. The number N of chan-
nel packets in a BOP is fixed, while both kj and mj

are variable and satisfy 1 ≤ kj ≤ N , kjmj = sj , and
(N − kj)mj = cj , where cj is the number of protection
symbols assigned to the jth layer (Table 1).

i i i i i i i
i i i i i i i
x x x x i i x
x x x x x x x
x x x x x x x

Table 1. L = 3 layers are sent in three BOPs of N =
5 packets each. The length of the packets is m1 = 4,
m2 = 2, and m3 = 1 in the first, second, and third BOP,
respectively. Information symbols are denoted by i and
protection symbols by x.

Because Reed-Solomon codes are maximum distance
separable codes, when layer j is transmitted over a packet
erasure channel, the receiver can recover all sj informa-
tion symbols if no more than N − kj channel packets are
lost out of the N transmitted ones.

Suppose now that the total transmission budget is fixed
to S = s1 + · · · + sM . Then one can either send all lay-
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ers without protection, or the first M − 1 layers with a
total protection budget c1 + · · · + cM−1 = sM , or the
first M − 2 layers with a total protection budget c1 +
· · · + cM−2 = sM + sM−1, etc. That is, the total trans-
mission budget is kept constant by trading off informa-
tion symbols for protection symbols. When L BOPs are
sent (1 ≤ L ≤ M) and an error protection allocation
cL = (c1, . . . , cL) is used, the expected distortion is

E(cL) = (1 − B1(c1))E0 +

L∑

j=2

Ej−1(1 − Bj(cj))

×

j−1∏

k=1

Bk(ck) + EL

L∏

k=1

Bk(ck)

(1)

where Bj(c) is the probability of successfully recover-
ing all the information symbols in the jth layer when
cj = c, and Ej is the distortion if the first j layers are
reconstructed. Here we assume that packet losses are in-
dependent in different BOPs. Note that Ej is the error
between the reconstructed 3D model if all M layers are
decoded and the reconstructed 3D model if only the first j
layers are decoded. The goal is to determine the number
of transmitted layers L and the associated error protec-
tion allocation cL = (c1, . . . , cL) such that the expected
distortion (1) is minimum. Al-Regib et al. [5] compute
a solution to this problem by full search. This is done as
follows. For all values of L, L = M, . . . , 1, with cor-
responding protection budget CL, CL = 0, sM , sM +
sM−1, . . . , sM + sM−1 + · · · + s2, all possible alloca-
tions cL = (c1, . . . , cL) such that c1 + · · ·+cL = CL are
tested, and the best one is selected. To reduce the com-
plexity of this exhaustive search, they propose to allow
only solutions that satisfy the constraint c1 ≥ . . . ≥ cL.
Moreover, they suggest to stop the iteration on L in the
algorithm as soon as the expected distortion of the best
allocation for L is greater than that for the previous L.

The approach of [5] has a major drawback. When
CL is large, the number of possible L-tuple candidates
(c1, . . . , cL) that satisfy the constraint c1+· · ·+cL = CL

and c1 ≥ . . . ≥ cL is too large to allow an exhaustive
search. For example, when L = 11, the number of can-
didates is 42, 560, 20298, 2012069, and 470259534 for
CL = 10, 20, 40, 80, and 160, respectively. Because of
the BOP packetization constraints 1 ≤ kj ≤ N, kjmj =
sj , and (N − kj)mj = cj , not all candidates are ad-
missible. But this is not an advantage as usually only
a few candidates will be admissible, leading to a poor
performance of the system. Worse, in many cases, there
will be no admissible allocations. For example, when
s1 = 4269, N = 100, and CL = 2650, it is not pos-
sible to build a BOP for the first layer.

3. PROPOSED SOLUTION

In this section, we first present a flexible BOP packeti-
zation technique. Then we provide a linear-time algo-
rithm that finds an optimal number of layers to be trans-
mitted and a corresponding optimal error protection al-

i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i d

i i i i i i i i i
i i i i i i i i i
i i i i i i i i d
i i i i i i i i d
x x x x x x x x x

i i i i i i i i i i i i
i i i i i i i i i i i d
i i i i i i i i i i i d
x x x x x x x x x x x x
x x x x x x x x x x x x

Table 2. Three of the five possible packetizations of layer
j into a BOP when N = 5 and sj = 34. The letter d
denotes a dummy symbol.

location. In contrast to [5], we do not assume that the
number of protection symbols is nonincreasing. More-
over, we do not assume that the transmission budget is
fixed to s1 + · · ·+ sM . Instead, we compute our solution
for any arbitrary total transmission budget.

3.1. Proposed packetization

We define the code gain g of a BOP as the number of
packets that contain only protection symbols. With the
packetization of [5], g may not take all values in the set
{0, . . . , N − 1}. For example, suppose that N = 5 and
sj = 34. Then only g = 3 and g = 4 are admissible. We
propose to make the construction of a BOP more flexible
by inserting a dummy information symbol at the end of
an information packet if needed. In this way, we guaran-
tee that g can take all values in {0, . . . , N − 1}. We do
not transmit the dummy symbols as they can be inserted
at the decoder automatically just to realize a rectangular
BOP and hence do not contribute to the transmitted bit
budget. For the above example, the values g = 0, 1, 2 can
be obtained with (mj = 7, dj = 1), (mj = 9, dj = 2),
and (mj = 12, dj = 2), respectively (Table 2). Here dj

denotes the total number of dummy symbols for the BOP.
The N possible packetizations corresponding to the N

values g = 0, . . . , N − 1 can be obtained in a systematic
way as follows. For a given code gain g ∈ {0, . . . , N −
1}, let mj,g, dj,g, and kj,g denote the size of the packet,
the number of dummy symbols, and the number of infor-
mation packets, respectively. Then we have kj,g = N −g

and (mj,g, dj,g) is the unique pair solving the equation
kj,gmj,g = sj + dj,g subject to 0 ≤ dj,g ≤ kj,g − 1. The
number of protection symbols associated to a code gain g

for the layer j is cj,g = gmj,g.

3.2. Proposed algorithm

Using the BOP packetization of Section 3.1, we provide
an algorithm for finding an optimal number of transmit-
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ted layers L ∈ {1, . . . , M} and a corresponding opti-
mal code gain allocation gL = (g1, . . . , gL) given a to-
tal transmission budget R. Note that once an optimal
code gain allocation is known, one can derive immedi-
ately the corresponding optimal error protection alloca-
tion cL = (c1,g1

, . . . , cL,gL
) as explained in Section 3.1.

Let P (x) =
∑x

j=0
pN (j), where pN (j) is the prob-

ability of losing j packets out of N transmitted ones.
Let ∆E(gi, . . . , gL) denote the expected reduction in the
distortion when layers i, . . . , L are sent with code gains
gi, . . . , gL, respectively, given that layers 1, . . . , i− 1 are
correctly decoded. Then

∆E(gi, . . . , gL) =

L∑

t=i

(Et−1 − Et)

t∏

j=i

P (gj).

Since the expected error at the receiver is

E(g1, . . . , gL) = E0 − ∆E(g1, . . . , gL)

an optimal code gain allocation should maximize the ex-
pression ∆E(g1, . . . , gL). This can be done recursively
with dynamic programming using the following result.

Lemma 1. For all k = i + 1, . . . , L

∆E(gi, . . . , gL) = ∆E(gi, . . . , gk−1) +

∆E(gk, . . . , gL)

k−1∏

x=i

P (gx).

Proof. Let ∆Et(g) = (Et−1 − Et)P (g). Then

∆E(gi, . . . , gL) =

L∑

t=i

∆Et(gt)

t−1∏

j=i

P (gj)

=

k−1∑

t=i

∆Et(gt)

t−1∏

j=i

P (gj) +

k−1∏

x=i

P (gx)

L∑

t=k

∆Et(gt)

t−1∏

j=k

P (gj)

which gives the desired result.
Let Pi(r, g) be equal to P (g) if r ≥ si+ci,g and equal

to zero, otherwise. Let ∆Ei(r, g) be equal to ∆Ei(g) if
r ≥ si + ci,g and equal to zero, otherwise. Let ∆G(r; i :
L) denote the maximum expected reduction in distor-
tion when layers i, . . . , L are sent over the channel with
code gains gi, . . . , gL, respectively, given that

∑L

j=i sj +
cj,gj

≤ r, and layers 1, . . . , i−1 were correctly decoded.
That is,

∆G(r; i : L) = maxP
L
j=i sj+cj,gj

≤r

∆E(gi, . . . , gL).

Then Lemma 1 with k = i + 1 gives for 1 ≤ i < L

∆G(r; i : L) = max
0≤g≤N−1

{∆Ei(r, g)+

Pi(r, g)∆G(r − si − ci,g; i + 1 : L)}
(2)

On the other hand, we have

∆G(r; L : L) = max
0≤g≤N−1

∆EL(r, g). (3)

In a preprocessing step, we compute for each layer
i = 1, . . . , M and for each code gain g = 0, . . . , N − 1,
the set of protection symbols ci,g (see Section 3.1). Then
we build the M × (R + 1) array ∆G(r; i : M) for i =
M, . . . , 1 and r = 0, . . . , R, recursively using (2) and (3).

Now, let g∗(∆G(r; i : L)) be a function that returns
the smallest g that achieves ∆G(r; i : L) in (2) (respec-
tively (3)) when ∆G(r; i : L) > 0 and let it be 0 other-
wise. Then g∗(∆G(r; i : L)) is the optimal code gain g

for the ith layer (and the corresponding ci,g is the optimal
number of protection symbols) given that r is the number
of available transmission symbols for layers i to L, and
that layers 1 to i − 1 are already decoded.

Algorithm 1 summarizes our approach. The time com-
plexity of the algorithm is O(NMR), and its space com-
plexity is O(MR). One can speed up Algorithm 1 by
noting that for each i, the array entry ∆G(r; i : M) need
only be computed for r = si to R −

∑i−1

j=1
sj as all other

array entries are either 0 or will never be required.
Note that the algorithm can also be used when the

size of a channel packet is constrained to be smaller than
a given maximum length. In this situation, we simply
include this constraint in the preprocessing step.

Algorithm 1 Optimal solution
Input: M , s1, . . . , sM , E0, . . . , EM , N , R.
Output: L, g1, . . . , gL.
for i = M to 1 do

for r = 0 to R do
Compute ∆G(r; i : M) and g∗(∆G(r; i : M))

end for
end for
Set r = R and L = 0
for i = 1 to M do

if r ≥ si then
gi = g∗(∆G(r; i : M))
r = r − (si + ci,gi

) and L = i

end if
end for

We can also efficiently compute an optimal solution
to the optimization problem under the monotonicity con-
straint gi+1 ≤ gi. This will allow us to evaluate the per-
formance loss due to this constraint.

For 0 ≤ r ≤ R, 1 ≤ i ≤ L, and 0 ≤ g ≤
N − 1, let H∗(r, g; i : L) denote the maximum reduction
in expected distortion when layers i, . . . , L are transmit-
ted with code gains gi, . . . , gL, respectively, given that∑L

j=i sj + cj,gj
≤ r, gi ≤ g, and layers 1, . . . , i−1 were

correctly decoded. Then

H∗(r, g; i : L) = max
0≤x≤g

{∆Ei(r, x)+

Pi(r, x)∆G(r − si − ci,x; i + 1 : L)}

In this way, H∗(R, N − 1; 1 : L) is the maximum
reduction in expected distortion when layers 1, . . . , L are
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transmitted with code gains g1, . . . , gL, respectively, given
that

∑L

j=1
sj + cj,gj

≤ R and g1 ≤ N − 1. To compute
H∗(R, N − 1; 1 : L), we use the following relations. For
0 ≤ r ≤ R, 1 ≤ i < L, and 0 ≤ g ≤ N − 1, we have

H∗(r, g; i : L) = max{∆Ei(r, g) + Pi(r, g)

H∗(r − si − ci,g, g; i + 1 : L),

H∗(r, g − 1; i : L)}

(4)

For 0 ≤ r ≤ R, 0 ≤ g ≤ N − 1, and i = L,

H∗(r, g; i : L) = max
0≤x≤g

{∆Ei(r, x)}. (5)

Exploiting (4), (5), and the flexible BOP packetiza-
tion, an optimal solution that satisfies the constraint gi+1 ≤
gi can be computed in O(NMR) time (see [8] for a de-
tailed description). Similarly, we can also efficiently com-
pute an optimal solution to the optimization problem sub-
ject to the monotonicity constraint ci+1,gi+1

≤ ci,gi
(see

[8]).

4. EXPERIMENTAL RESULTS

We present results for a Bunny model consisting of 5597
faces and 2907 vertices. We first compressed the model
with the CPM coder [6] to produce one base mesh and 11
update layers. Then we compressed the base mesh with
the Edge Breaker algorithm [9]. The resulting number of
information symbols (here bytes) was s1 = 4269, s2 =
117, s3 = 144, s4 = 185, s5 = 240, s6 = 293, s7 =
415, s8 = 624, s9 = 892, s10 = 1284, s11 = 1805, and
s12 = 2650. The distortions (measured by the quadric
error metric [10]) were E1 = 1695, E2 = 973.64, E3 =
721.47, E4 = 292.18, E5 = 202.30, E6 = 138.18, E7 =
84.63, E8 = 42.08, E9 = 21.54, E10 = 11.33, E11 =
4.76, and E12 = 0. The value of E0 is arbitrary and was
set to E0 = 5000. The packet erasure channel was mod-
eled as a two-state Markov process with average burst
error length 5. The number of channel packets per BOP
was equal to N = 100. The total transmission budget
was R =

∑12

j=1
sj = 12918.

Figure 1 shows the expected distortion as a function
of the average packet loss rate for three approaches. The
first one, “Constrained C-bits”, assumes as in [5] that
ci+1,gi+1

≤ ci,gi
. The second one, “Constrained Code

Gain”, assumes that gi+1 ≤ gi. The third approach uses
Algorithm 1, which does not make any assumptions.

The experiments show that the monotonicity constraint
on the number of protection symbols can lead to a signifi-
cant loss in performance. Indeed, although the individual
symbols in layer i are more important than those in layer
i + 1, the protection of layer i may require fewer pro-
tection symbols if it has fewer information symbols. The
monotonicity constraint on the code gains also harms the
performance because when the number of available pro-
tection symbols is not enough to increase the code gain of
layer i, then it cannot be used by layer i + 1 if it violates
the condition gi+1 ≤ gi. This can lead to a poor use of
the available protection symbols.
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Fig. 1. Expected distortion as a function of the channel
average packet loss rate for a Bunny model.

5. CONCLUSION

We proposed a flexible BOP packetization technique and
an efficient source-channel allocation algorithm for the
transmission system of [5]. Although it has linear time
complexity, our algorithm cannot be used for real-time
applications where the error protection allocation has to
be computed online. However, we can use it to check the
quality of suboptimal solutions, or in applications where
the error protection is computed offline and used for a
wide range of channel statistics.
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