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ABSTRACT

We present a method for performing acoustic echo 

cancellation in a channel with rapidly varying gain and thus 

a rapidly varying channel characteristic.  This is a situation 

in which standard AEC approaches perform poorly.  Our 

method involves learning a scale-free channel characteristic 

(H
� ).  We then apply this to a windowed version of the 

signal and remove the projection of the transformed signal 

from the output signal.  We also develop a “ramp 

projection” method that allows for a linear variation in gain 

within the window.  We show results in a telephony 

application with 3 dB to more than 8 dB of improvement 

over conventional AEC using the simple projection and an 

additional 1 dB using the ramp projection. 

1. INTRODUCTION 

There exists a vast literature on acoustic echo cancellation 

for slowly-varying channels (see [4] for a survey).  

However, when a channel has a “hidden” but rapidly-

varying gain factor, as can be the case in systems with 

Automatic Gain Control (AGC), this assumption is no 

longer valid and conventional methods apply quite poorly.  

This situation can occur when there is an amplification stage 

prior to the signal combination (i.e., inside a black box) 

whose output we do not have access to. We illustrate such a 

situation in Figure 1. 

Figure 1. A representative scenario for AEC in the 

presence of an internal gain.  The output of the gain 

stage is inductively coupled onto the phone line via I and 

we do not have access to its raw values (s[n]x[n]).  The 

goal is to remove the transformed version of the near-

end signal, (s[n]x[n]*h[n]), from the output y[n] to 

produce a clean version of the remote signal r[n]. 

 In our particular scenario, the microphone signal x[n]

was coming from a headset microphone and the black box 

was the headset amplifier that processed the signal and 

coupled it to the phone line.  Thus we had access only to 

x[n] and y[n] shown above.  The goal was then to remove 

the effect of the near-end signal x[n] from the output y[n],

so we could have a clean version of the remote caller’s 

signal r[n].  The presence of some kind of gain stage 

became clear when we drove the input with a modulated 

sine wave. The input and output are shown in Figure 2 

below.  Clearly a rapid channel variation is occurring 

somewhere within the amplifier. 
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Figure 2.  Input signal x[n] and resulting output y[n] in 

the absence of the remote signal, showing the significant 

effect of the internal amplifier. 

2. MODELING THE CHANNEL 

Though there could in fact be an arbitrary channel variation 

that resulted in the output shown above, it seemed likely 

that a gain stage could account for much of the variation.  

We  thus modeled the channel H between x[n] and y[n] as 

the product of a slowly-varying characteristic H
� and a 

continuous scaling s[n].  In the time domain, this means: 

[ ] [ ]( [ ]* [ ]) [ ]y n s n h n x n r n= +
�

 (2.1) 

where H
�

 is modeled as an all-zero filter,  i.e. 
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Note that we have reversed the order of the gain stage and 

the channel as a tractable approximation of the real model. 

We refer to H
� as the scale-free channel model.  This type of 

scale-free modeling has been applied in other areas of signal 

processing, such as vector quantization [3]; our work brings 

this powerful representation to adaptive filtering scenarios. 

3. FINDING THE SCALE-FREE CHANNEL MODEL 

We first obtain a pair of training signals x[n] and y[n] in the 

absence of any remote signal, in order to characterize the 

transfer function H
�

.  We then normalize each sample y[n] 

by the norm of the relevant region of samples from x that 

will be used to predict that sample given our transfer 

function.  With the channel model above, this gives us: 
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Given this normalized signal, we can now fit the filter 

coefficients b using the method of least squares [1]: 
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which we can express as Xb y= .  We can then solve for 

b:

1

( )
T

b X X y
−

=    (3.3) 

The length of the training signal pair can vary, but should be 

at least an order of magnitude longer than the number of 

filter taps.

4.  APPLYING THE MODEL 

Once we have determined H
�

, we can predict the 

contribution to y[n] from x[n] in a scale-free sense:

ˆ[ ] [ ]( [ ]* [ ])y n s n x n h n=

�
  (4.1) 

where r[n] is the remote signal, but we are still in need of 

s[n]. We also have the additional assumption that s[n]

varies more slowly than y[n] itself (though much faster than 

H
�

).  Otherwise, we could trivially find an s[n] that would 

completely eliminate y[n], but would eliminate r[n] as well.

 In this section, we present two ways to model and 

estimate s[n].  Both methods have the same basic approach: 

break y[n] and x[n] into windows, then remove the best fit 

of x[n]*h[n] from y[n].  The two methods are (1) ordinary 

vector projection, which models s[n] as piecewise constant 

over windows, and (2) “ramp projection,” which models 

s[n] as piecewise linear  over windows. 

4.1. Ordinary projection 

Consider that we have a window of W samples from 

x[n]*h[n], which we will call [ ]y n� , and the corresponding 

W samples of y[n].  Let us model s[n] as being constant 

over this region.  We thus want to find the scale factor 

α such that [ ]y nα �  is as close to y[n] as possible in a 

least-squares sense, i.e. 
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If we expand this expression and take the derivative with 

respect to α , we find there is a single minimum at 
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This is the familiar vector projection of y[n] onto [ ]y n� .

4.2. Ramp projection 

The problem with the ordinary projection is that s[n] may in 

fact be changing over the course of the window – in the 

example of Figure 2, it is quite clear that the gain is 

changing continuously.  We thus introduce the ramp 

projection, which allows s[n] to be linear within a window, 

starting at some offset  α  and rising with slope β .  This 

leads to the following minimization problem: 
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When we expand this and take derivatives, we again find 

that there is a global minimum, found by solving the 

following system of equations: 
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4.3. Choosing an appropriate window length 

Intuitively, the shorter the window length, the better the fit 

of [ ]y n�  to y[n] will be.  However, this comes at a price: 

shorter windows will result in more abrupt changes in the fit 

signal [ ] [ ]s n y n� .   This is a subtle issue, since in the 

absence of a remote signal r[n], this will often result in 

further reducing the power of the residual, which is the 

desired effect.  However, when r[n] is present, shorter 

windows will lead to greater distortion of the remote signal.  

This is because shorter windows lead to a greater number of 
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degrees of freedom in s[n], i.e., the size of the pieces of our 

piecewise constant or piecewise linear estimate.   Since the 

minimization is trying to cancel y[n], this method will 

attempt to cancel r[n] along with the transformed version of 

x[n], as we will see in section 5.3. 

4.4. Example 

To illustrate the operation of the projection and ramped 

projection operators, we present a simple example of a  

modulated sine wave that we are trying to fit over several 

windows using both techniques.   In Figure 3 below, we 

have set  x[n] to be a fixed frequency sine wave, H
�

is

identity, r[n]=0, and s[n] and y[n] are shown  below. 
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Figure 3.  Scaling function s[n] and the resulting 

y[n]=x[n]s[n].  x[n] is a sine wave at a fixed frequency. 

 We choose a window length W of 150 samples for 

illustrative purposes, and then apply the techniques above to 

fit y[n] with the carrier signal x[n] (which equals 

[ ]y n� since H
�

 is identity).  In Figure 4 below, we can see 

how the projection method chose the best piecewise 

constant scalefactor for each window, though this still 

results in a distorted final signal.. 
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Figure 4.  Estimated s[n] and resulting fit to y[n] using 

ordinary projection with windows of 150 samples. 

   In Figure 5 below, we can see how the piecewise 

linear model of s[n] found via ramp projection provides a 

much better fit, and though the original scaling function was 

sinusoidal, the resulting signal is very close to the original, 

as well as a great deal smoother.

5. RESULTS 

All of the results in this section are in the context of the 

telephony setup described above.  Specifically, x[n] is 

coming from a headset microphone, and y[n] is the output 

on the phone line, which contains the output of the headset 

amplifier and the remote speaker r[n].   All audio was 

sampled at 16 kHz. 
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Figure 5.  Estimated s[n] and resulting fit to y[n] using 

ramp projection with windows of 150 samples. 

5.1. Examining s[n] for the modulated sine wave 

We begin by examining the modulated sine wave from 

Figure 2.   We fit the signal with windows of 1000 samples 

and show the resulting estimated s[n] in Figure 6 below. 

0 1 2 3 4 5 6

x 10

4

0

5

10

15

20

25

s
p

[n]

0 1 2 3 4 5 6

x 10

4

0

5

10

15

20

25

s
r

[n]

Figure 6.  Estimated s[n] for the modulated sine signal 

sent through the telephony system via ordinary 

projection (top) and ramp projection (bottom).

 Note that the real system is very much like our 

illustrative example: the scaling function is continuously 

varying, and the ramp projection is able to make a smoother 

fit.  This is borne out by the results in the table below: the 

simple projection yields an SNR improvement (original 

phone signal vs. canceled signal) of 15.6 dB, while the 

ramped projection yields 22.2 dB  (r[n]=0).  At the same 

time, the sharp variations at the peaks of the estimated s[n]

are cause for some concern – it means that the estimate is 

not continuous at those points.  We investigate this by trying 

the simple projection with a smaller window size (W =100)

in Figure 7 below. 

 The discontinuities now appear in the simple projection 

method as well, implying that the actual gain function does 

contain discontinuities, which were being accurately 

modeled by the ramp projection with a much larger window 

size.   Note that this smaller window size gives us an SNR 
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improvement of 22.3 dB, but with a window size this short 

it is likely we would distort the remote signal  r[n], as we 

will show in Section 5.3. 
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Figure 7.  The estimate of s[n] using simple projection 

where W=100.  Note that the discontinuities still appear. 

5.2.  SNR improvement vs. method 

In Table 1 below, we show the improvement in the SNR in 

the presence of a remote signal for various methods: a fixed 

channel model, the NLMS (Normalized Least Mean 

Squares) method [2], and our method using both simple and 

ramp projection.  We looked at two signal scenarios: the 

modulated sine wave and speech input.  In all cases, we 

added a known remote signal r[n] containing speech 

recorded from the channel.

 The filter H
�

had 201 taps (100 causal, 100 anticausal) 

and was trained once on 64000 samples of speech, and the 

resulting filter was used for all the experiments below. A 

window size of 1000 samples was used for the projection 

methods.  We define the SNR as: 

2 2

ˆ10log|| [ ] || || ( [ ]) ||SNR r n y y n= −  (5.1) 

 Note that the line itself is noisy even in the absence of 

any local or remote signal (“silence”), and the maximum 

SNR improvement (signal power vs. “silence” power) 

would be 17.7 dB.

 The “fast” vs. “slow” versions of NMLS correspond to 

setting µ  to the maximum prescribed value in [1] (2.06) vs. 

a more conservative value (1e-3).  Note that the latter would 

more typical, as most systems reduce or event stop 

adaptation (i.e., use a fixed H) when a remote signal is 

present.  In this case, our methods would  outperform 

NLMS by more than 8 dB.    In addition to the numerical 

results, there was a substantial perceptual improvement 

when using our projection methods. 

Modulated Sine Speech 

Fixed H -2.8 0.2 

NLMS (slow) 1.7 1.1 

NLMS (fast) 2.7 6.1 

Simple Projection 11.3 9.7 

Ramp Projection 12.2 10.8 

Table 1.  SNR improvement (dB) for various algorithms.  

Note that the maximum improvement would be 17.7 dB. 

5.3. SNR improvement vs. window size 

In this section, we examine the effect of window size on the 

SNR reduction.   The results are shown in Figure 8 below; 

note that these results are averaged over a smaller sample 

than Table 1 above. 
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Figure 8. SNR vs. window size for ordinary projection 

(solid line) and ramp projection (dashed line). 

As expected, we see that the distortion will increase with 

windows that are too small (due to overly aggressive fitting) 

and too large (due to a poor estimate of s[n]).  Also note, 

though, how much more robust the performance of the 

ramped projection is  with respect to window size, due to its 

greater flexibility in modeling s[n] as seen in Section 5.1. 

6. DISCUSSION 

We have presented a method for doing acoustic echo 

cancellation in the presence of a rapidly varying gain via 

estimating a scale-free channel model H
�

 and then 

performing a window by window projection (ordinary or 

ramp) onto the target signal y[n]. While we have presented 

this method in the context of signal separation in a 

telephony system, we expect there are many other 

applications where there is an unknown gain stage whose 

pre-combination output cannot be accessed. 
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