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ABSTRACT

The resampling of discrete-time signals where the underlying ana-
log signal is non-bandlimited is considered in this paper. We extend
the generalized sampling theory developed based on the principle
of consistency to resampling. Realizing the resampling system has
both discrete input and output, the performance of the resampling
filter is considered in l2 instead of the traditionally used L2. We
show that the performance of the resampling system depends on the
resampling rate instead of the actual interpolating kernels. The the-
ory can be applied to image processing applications like zooming to
provide better response to high frequency components. Since the re-
sampling process is discrete in nature, our filter designed to optimize
resampling in l2 is shown to outperform other techniques designed
in L2.

1. INTRODUCTION

Most of the existing techniques for processing discrete-time signals
are based on the (implicit) assumption that the underlying analog
signals are bandlimited. This assumption does not hold for most
images where sharp edges exists. Therefore, even simple operations
like the enlargement of an image is not trivial since aliasing will be
introduced through the interpolation filter.

A recent method proposed in [1] tries to overcome this prob-
lem partially by representing the interpolation and resampling ker-
nels as polyphase filters. The frequency responses of the polyphase
filter are equalized and therefore aliasing is reduced. However, high
frequency information will still be lost in the process and is unre-
coverable. Other techniques have been introduced to prevent dis-
tortion as well as reserve the high frequency components [2, 3].
The underlying principle used in these methods is the Generalized
Sampling Theory (GST) for non-bandlimited continuous-time sig-
nals [4]. However, as pointed out in [5], the filters designed based
on the GST is optimized for an operator defined in l2 → L2; it can
not be directly applied to the resampling system, which is associated
with an operator for l2 → l2. Furthermore,the filter designed based
on GST that minimizes the L2 error does not necessarily minimize
the l2 error. Since the generalized sampling theory is developed to
optimize reconstruction, it can be suboptimal when applied to re-
sampling.

In this paper, we consider the resampling of discrete-time signals
where the underlying analog signal is non-bandlimited. Our filter is
designed to optimize the resampling process in the discrete domain.
The main contributions of this paper are as follows. First, we proved
that the performance of the resampling system depends on the resam-
pling rate instead of the interpolating kernel. Second, we extended
the original GST to resampling and the correction filters obtained are
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Fig. 1. Block diagram representation of reconstruction and resam-
pling system.

optimal for the resampling process. We show by through an exam-
ple of image enlargement that the our the filter based on our extended
GST performs better than the one defined by the original GST.

This paper is organized as follows. The generalized sampling
theory is reviewed in Section 2. In Section 3, this theory is extended
to resampling systems and the correction filter is redefined subject to
the new optimizing criteria defined in discrete domain. The image
enlargement example is discussed in Section 4.

2. REVIEW OF GENERALIZED SAMPLING THEORY

The schematic diagram of the generalized sampling theory is shown
in Figure 1. Since most of real time signals are energy limited, we
restrict our discussion to the Hilbert space L2.

Define the translation operator Ta : L2 → L2, Taφ(x) = φ(x−
a); the set of uniformly shifted vectors {Tnaφ(x)}n∈Z consists of a
frame for its closed linear space

V (φ) = span({Tnaφ(x)}n∈Z) (1)

In generalized sampling theory, the uniform samples f̂(n) of an ana-
log signal f(x) are viewed as the inner product of f(x) with a set of
vectors {Tnaφ(x)}n∈Z

f̂(n) = f(x) ∗ φ(−x) · δ(x − na) = 〈f(x), Tnaφ(x)〉 (2)

Similarly, the reconstruction of f̃(x) using f̂(n) is performed using
vectors spanning the reconstruction subspace V (ϕ)

f̃(x) =
∑

n

f̂(n)Tnaϕ(x) =
∑

n

〈f(x), Tnaφ(x)〉Tnaϕ(x) (3)

Therefore perfect reconstruction can only be achieved when f(x) ∈
V (ϕ) and 〈Tmaφ(x), Tnaϕ(x)〉 = δm,n. If this condition is satis-
fied, the acquisition filter φ(x) is called the ideal prefilter of ϕ(x).
Otherwise, reconstruction errors (aliasing, distortion) would be in-
evitable.
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The GST loose the constraint from perfection reconstruction to
consistent reconstruction. It requires that if f̃(x) is re-injected into
the system, the reconstructed signal should produce the same mea-
surements f̂(na) as the original input. This can be achieved by us-
ing a correction filter Q to modified the coefficient set such that the
signal is projected onto V (ϕ) orthogonal to V (φ) [4]. Therefore,
the reconstruction error ‖f̃(x)− f(x)‖L2 will be minimized for the
system with arbitrary φ(x) and ϕ(x).

Let the cross correlation between φ(x) and ϕ(x) is defined by

Aφϕ(k) = 〈φ(x − k), ϕ(x)〉 (4)

If it is invertible, then the correction filter Q is specified via the in-
version of Aφϕ in the z transform domain:

Q(z) = A−1
φϕ(z) (5)

The generalized sampling theory can be described as

∀f(x) ∈ L2, f̃(x) =
∑

n

〈f(x), Tnaφ〉 (
A−1

φϕ ∗ Tnaϕ
)
(x) (6)

The term
(
A−1

φϕ ∗ Tnaϕ
)

(x) can be interpreted as the quasi-dual

operator of the acquisition filter, denoted by φ̃. It can be verified that
φ̃(x) and φ(x) satisfies〈

Tnaφ, Tmaφ̃
〉

= δm,n

There are two advantages of using GST in resampling system.
First, by using non bandlimited kernels, the high frequency compo-
nents can be preserved. Second, it ensures minimum mean squared
error when non-ideal operators are used. The resampling system can
be viewed as a two-step process: an implicit reconstruction process
followed by a sampling process [6]. However, as we shall see in
Section 3, the filter designed based on GST that minimizes the L2

error does not necessarily minimize the l2 error. Since the general-
ized sampling theory is developed to optimize reconstruction, it can
be suboptimal when applied to resampling.

3. THE RESAMPLING SYSTEM

The resampling system differs from the reconstruction system by an
additional sampling stage as shown in Figure 1. Its discrete output
f̃(m) is obtained by sampling f̃(x) at a rate b which is typically
different from the original sampling rate a. The output of the resam-
pling system is given by

f̃b(m) =
∑

n

(q ∗ f̂)(na)Tnaϕ(mb) (7)

The subscript b is used to indicate the sampling rate of the sequence
and is often omitted if it is clear. Obviously, the output f̃(m) ∈
V (ϕb) where

V (ϕb) = Span{Tnaϕ(mb)}m,n∈Z (8)

Before we state the conclusion, we start with a fundamental result:

Proposition 1. Sampling any continuous function h(x) ∈ L2 at rate
b, the discrete sequence h(m) = h(x)x=mb, m ∈ Z generates the
same space as the pulse train ∆b =

∑
n δ(x−nb) iff h(m) �= 0 for

any m.

Actually this statement requires
∑

m h(m) to define an invert-
ible convolution operator. Since∑

m

h(m) =
∑
m

∫
h(x)δ(x − mb)dx

hence ‖h(m)‖l2 ≤ ‖h(x)‖L2 < ∞. The sequence h(m) defines a
bounded sequence and thus is invertible provided any of the h(m) is
nonzero.

This proposition gives us some distinctive properties of the re-
sampling system. The resampling system deals with output in dis-
crete space generated by shifts of the sequence ϕb(m), while recon-
struction system deals with continuous output in the space generated
by {Tnaϕ(x)}n∈Z . According to the Proposition 1, any sequence
sampled at b falls in the discrete space generated by the pulse train
∆b despite of the specific choices of ϕ(x). That is for all sequence
h1b(m), it can be represented by a weighted sum of another se-
quence h2b(m) despite h1(x) and h2(x). Therefore, we obtain an
outstanding conclusion in the next proposition

Proposition 2. Given two sampling rate a and b and the prede-
fined prefilter φ(−x), the resampling system can always achieves
the same performance with properly designed correction filter for
different choices of ϕ(x).

The performance of any resampling system depends on the dif-
ference between acquisition space and the resampling space. For
given a and φ(−x), according to (1), the acquisition space is de-
fined. On the other hand, since all ϕb(m) belongs to the same
space, {Tnahb(m)} also spans the same resampling space. There-
fore Proposition 2 is justified.

For the special case a = b,

span({Tnaϕb(m)}n,m∈Z) = span({ϕb(m)}m∈Z) (9)

No matter how φ(x), ϕ(x) ∈ L2(R) is chosen, the system should
achieve perfect performance in the sense that the discrete input f̂a(n)
can be perfectly reconstructed. When a �= b, the acquisition space
and the synthesis space are generally different. Similar to the recon-
struction system, a correction filter defined the operation l2 → l2

can be used to project the signal representation f̂(na) V (φa) onto
V (ϕb). Our next task is to define the correction filter used to achieve
minimum error in l2. There are two types of resampling system to be
treated separately, one is of continuous input, or an system defined
from L2 → l2; the other one is of discrete input defining a system
of l2 → l2.

3.1. When φ(x) �= δ(x)

Similar to the correction filter defined in the reconstruction case,
there is one unique correction filter in resampling system such that
the principle of consistency is satisfied.

Theorem 1. Consider the resampling system shown in Figure 1 with
φ(−x) �= δ(x). Define the discrete cross correlation function as

Aφϕ(ka) =
∑
m

ϕb(m)φ(mb − ka) (10)

If Aφϕ(ka) is an invertible operator from l2 → l2, there exist a cor-
rection filter q = A−1

φϕ in z transform domain such that the principle
of consistency is satisfied:

〈g(x), Tnaφ(x)〉 =

〈∑
m

f̃b(m), Tnaφ(x)

〉
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Proof. By the principle of consistency, when f̃(mb) is re-injected to
the system, it should produce the same set of samples f̂(na). Thus,
it requires that

f̂(na) =
〈∑

m f̃(mb), φ(x − na)
〉

=
∑

n(q ∗ f̂)(na)
∑

m ϕ(mb − na)φ(mb − ka) (11)

By substitute (7) into the equation, the consistency requirement (11)
is reduced to

f̂(n) = q ∗ f̂ ∗ Aφϕ(n) (12)

Therefore, the discrete filter q is defined to be A−1
φϕ.

3.2. When φ(x) = δ(x)

The reconstruction system is well defined when the input is either
discrete or continuous. However, in case of the resampling system,
the principle of consistency is not directly applicable under certain
circumstances. Suppose that φ(x) = δ(x); the consistency principle
requires that when

∑
m f̃b(m) is resent to the system, its samples at∑

n δ(x − na) should be the same as the original continuous signal

does. This is to sample a discrete sequence f̃b(m) at a different rate
a, which is generally not accomplishable.

Therefore, the principle of consistency has to be modified to be
adaptable in the resampling system. Referring to Figure 1, f(x) =

f̂(x) since φ(x) = δ(x). Denote the samples f̂(n) = fa(n) and the
shifted filter ϕb(x−m) = ϕ(x−mb). The consistency principle is
restated as

Principle of consistency: The sequence f̃b(m), if re-injected to
the system, should appear the same as the sequence f̂(n) to produce
the same output, or∑

m

f̃b(m) ∗ q ∗ ϕ(x) = f̃(x) (13)

In reconstruction system, the principle of consistency requires that
the output should appear the same as the input to the same acquisi-
tion space. Therefore, if f̃ is resent to the system, the output should
nonetheless be f̃ . The same idea is applied in the resampling system
to derive the condition in (13), which is one step further from ”the
same measurement of the acquisition filter” to ”the same output of
the reconstruction filter”.

From the modified consistency requirement, the correction filter
can be obtained through the following theorem.

Theorem 2. For resampling system with φ(x) = δ(x), the principle
of consistency can be satisfied uniquely iff ϕ(kb) is invertible. The
correction filter then can be defined as Q(z) = Ψ−1

b (z).

Proof. Substitute (7) into (13) and we have∑
m

(f̃b ∗ q)ϕb(x − m) =
∑

n

(fa ∗ q)(n)ϕa(x − n) (14)

substitute (7) into the LHS of the above equation and it can be rewrit-
ten as ∑

m

(f̃b ∗ q)ϕb(x − m)

=
∑

n

(fa ∗ q)(n)
∑
m

∑
k

ϕb(x − m)ϕa(kb − n)q(m − k)(15)

Compare (15) with the RHS of (14), the consistency is satisfied with∑
k

∑
m

ϕ(kb)q(m − k)ϕ(x − mb) = ϕ(x) (16)

or ∑
k

ϕb(k)q(m − k) = δm,0 (17)

Therefore, the correction filter is defined as the inverse of the recon-
struction filter, sampling at output rate.

Fig. 2. Enlargement by 2. The bilinear interpolator and correction
filter optimized error in L2 is used

Fig. 3. Enlargement by 2. The bilinear interpolator and correction
filter optimized error in l2 is used

To generalize the two cases above, we find that when φ(x) =
δ(x), the correction filter can be calculated using (10) with φ(x) =
1. Comparing (4) and (10), the correction filter used in the resam-
pling case depends much on the resampling rate b chosen. Because
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of this, the correction filter for resampling can be very different from
the one obtained based on GST, even if the acquisition and synthesis
filters are the same.

In summary, the design of correction filter in the resampling sys-
tem is subject to the requirement that the discrete output should be
consistent with the input, when re-injected into the system. The cor-
rection filter projects the input signal, either continuous or discrete
onto the space of V (ϕb) such that the different between input and
output measured in l2 is minimized. This criteria is more suitable
for resampling system where both input and output can be discrete.

4. EXAMPLE

The theory developed above is applied to the example of image
zooming. The interpolator used in image processing applications
are generally small kernels like linear or cubic interpolators. Be-
cause they are short in time, their frequency response is bad and will
cause aliasing and distortion which would degrade the quality of the
image. The correction filter defined in Theorem 2 is inserted and the
performance of zooming of factor 2 with and without the correction
filter is shown in Figure 2 and Figure 3.

We clearly see the improvement of high frequency response due
to the correction filter, which includes the edges of the hat edge, the
feather decorations and hair. The overall distortion of the image is
also reduced as can be observed from the improvement in the texture
of the hat and the face.

5. CONCLUSION

In this paper, we developed an extension to the generalized sampling
theory so that it can be applied to resampling of discrete-time signals.
The underlying analog signal can be non-bandlimited, therefore our
theory could provide better response to the high frequency signal.
We prove that the performance of the resampling system depends
on the resampling rate instead of the interpolating kernels used. A
correction filter is designed to optimize the l2 error instead of the
commonly used L2 error. It shows that our filter has better response
when applied to applications like image zooming than other filters
used to optimize L2 error.
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