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ABSTRACT

In this paper, we propose an original framework for three dimen-
sional face representation and matching for identification purposes.
Basic traits of a face are encoded by extracting curves of salient
ridges and ravines from the surface of a dense mesh. A compact
graph representation is then extracted from these curves through an
original modeling technique capable to quantitatively measure spa-
tial relationships between curves in a three dimensional space. In this
way, face recognition is obtained by matching 3D graph representa-
tions of faces. Experimental results on a 3D face database show that
the proposed solution attains high recognition accuracy and is quite
robust to facial expression and pose changes.

1. INTRODUCTION

In the last years, several works have addressed the issue of face iden-
tification mainly focussing on detection and recognition of faces in
still images and videos (see [1] for an updated survey). More re-
cently, the increasing availability of three-dimensional (3D) data, has
paved the way to the use of 3D face models to improve the effective-
ness of face recognition systems [2]. In fact, solutions based on 3D
face models, feature less sensitivity—if not invariance—to lighting
conditions and pose. This is particularly relevant in real contexts of
use, where face images are usually captured in non-controlled envi-
ronments, without any particular cooperation by human subjects.

Generally, three main classes of approaches can be identified
to distinguish the way in which 3D face models can improve face
identification with respect to traditional solutions. A first class of
approaches relies on a generic 3D face model to match two 2D face
images. For example, in [3] a method is proposed for face recogni-
tion across variations in pose, ranging from frontal to profile views,
and across a wide range of illuminations, including cast shadows and
specular reflections. To account for these variations, the algorithm
simulates the process of image formation in 3D space, using com-
puter graphics, and it estimates 3D shape and texture of faces from
single images.

A different class of approaches relies on using multiple imag-
ing modalities in which information extracted from 3D shapes and
2D images of the face are combined together to attain better recog-
nition results. In [4], face recognition in videos is obtained under
variations in pose and lighting by using 3D face models. In this ap-
proach, 3D database models are used to capture a set of projection
images taken from different point of views. Similarity between a tar-
get image and 3D models is computed by matching the query with
the projection images of the models. In [5], Gabor filter responses in
the 2D domain, and “point signature” in the 3D are used to perform
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face recognition. Extracted 2D and 3D features are then combined
together to form an augmented vector which is used to represent each
facial image. PCA-based recognition experiments, performed using
3D and 2D images are reported in [6]. The multi-modal result was
obtained using a weighted sum of the distances from the individual
3D and 2D face spaces. A large experimentation in terms of number
of subjects, gallery and probe images, and the time lapse between
gallery and probe image acquisition, is also presented in this work.

Finally, another class of methods relies on using only 3D shapes
for the purpose of face recognition. Early works focused on the use
of surface curvature information and the Extended Gaussian Image,
which provide one-to-one mapping between curvature normals of
the surface and the unit sphere. Following a similar solution, 3D
face recognition is approached in [7], by first segmenting the shape
based on Gaussian curvature, and then creating a feature vector from
the segmented regions. This set of features is then used to represent
faces in recognition experiments. However, a key limitation of such
approaches is that to enable reliable extraction of curvature data, ac-
curate 3D acquisition is required. Other solutions have used registra-
tion techniques to align 3D models or clouds of points. In [8], face
recognition is performed using Iterative Closest Point (ICP) match-
ing of face surfaces with resolution levels typical of the irregular
point cloud representations provided by structured light scanning.

In this paper, we propose an original solution to 3D face identifi-
cation based on the extraction, representation and matching of salient
creases of 3D faces. This model is mainly motivated by psycholog-
ical studies, indicating that a set of simple lines characterizing the
structure of an object are sufficient to identify its shape [9]. In fact,
line segments are less sensitive to illumination changes and local
variations since they integrate the inherent local structural character-
istics with spatial information of a face. In our approach, 3D face
models are represented by salient ridges and ravines, that we gen-
erally call wrinkles, extracted by using curvature information on the
surface of a dense mesh. Facial information captured by these curves
is then represented in compact form evaluating spatial relationships
between every pairs of curves. To this end, we propose an original
modeling technique capable to quantitatively measure the spatial re-
lationships between three dimensional entities. The model develops
on the theory of weighted walkthroughs (WWs), originally proposed
to represent spatial relationships between two-dimensional extended
entities [10]. In particular, the discussion starts by focusing on vol-
umetric entities, then it is shown that the model can also capture
relationships between linear entities. Finally, mapping wrinkles and
their relationships to a graph model and defining a distance measure
between 3DWWs allows for the effective comparison of face models

The paper is organized in three Sections and a Conclusion. In
Sect.2, a method is presented for extracting salient curves of ridges
and ravines from a dense triangular mesh. The theory of 3DWWs
is then developed and proposed to represent spatial relationships be-
tween linear entities in a 3D space. This enables the effective rep-
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resentation of a face model through an attributed relational graph
accounting for salient face wrinkles and their relationships. Based
on this model, a method for the efficient comparison of graph repre-
sentations of facial models is discussed in Sect.3. Face recognition
results obtained on a 3D face database are reported in Sect.4. Finally,
conclusions are outlined in Sect.5.

2. EXTRACTION AND DESCRIPTION OF WRINKLES

Surface creases, ravines and ridges, provide important information
about the shape of 3D objects. Intuitively, these salient traits can be
defined as those curves on a surface where the surface bends sharply.
Loci of sharp variation of surface normals have been intensively
studied in connection with researches on surface mathematics, hu-
man perception of shapes, quality-control of free-form surfaces, im-
age and data analysis and many other applications. In the proposed
solution, computation of salient convex creases (ridges) and concave
creases (ravines) is accomplished through the technique described
in [11]. As an example, Fig.1 shows salient curvature triangles de-
tected on a face model. Triangles in Fig.1(a) show model ridges,
while ravines are highlighted by the triangles in Fig.1(b).

Wrinkles extracted from a 3D face are 1D curves in a 3D refer-
ence space. Information captured by these curves is represented by
modeling curves and their mutual spatial relationships. To this end,
we propose a theory of 3D spatial relationships between linear enti-
ties, which develops on the model of weighted walkthroughs (WWs)
originally defined for two-dimensional extended entities [10]. De-
scription of spatial relationships through 3DWWs is invariant to trans-
lation and scaling but not to rotation. Therefore, in order to enable
invariance of face matching with respect to translation, scaling and
rotation, face models are first normalized: models are scaled and ro-
tated so as to fit within a sphere of unit radius centered at the nose
tip and aligning the nose ridge along the Z axis.

(a) (b)

Fig. 1. Salient curvature extrema detected on a face model: triangles
of ridge (a) and ravine (b).

2.1. 3D Weighted Walkthroughs

In a three dimensional Cartesian reference system, with coordinate
axes X, Y, Z, projections of two points, a = 〈xa, ya, za〉 and b =
〈xb, yb, zb〉 on each axis, can take three different orders: before, co-
incident, or after. The combination of the three projections results in
27 different three-dimensional displacements (primitive directions),
which can be encoded by a triple of indexes 〈i, j, k〉:

i =

��
�

−1 xb < xa

0 xb = xa

+1 xb > xa

j =

��
�

−1 yb < ya

0 yb = ya

+1 yb > ya

k =

��
�

−1 zb < za

0 zb = za

+1 zb > za

In general, pairs of points in two sets A and B, can be connected
through multiple different primitive directions. According to this,
the triple 〈i, j, k〉, is a walkthrough from A to B if it encodes the
displacement between at least one pair of points belonging to A and

B, respectively. In order to account for its perceptual relevance, each
walkthrough 〈i, j, k〉 is associated with a weight wi,j,k(A, B) mea-
suring the number of pairs of points belonging to A and B, whose
displacement is captured by the direction 〈i, j, k〉.

The weight is evaluated as an integral measure over the six-
dimensional set of point pairs in A and B (see Fig.2(a)):

wijk(A, B) = 1
Kijk

�
A

�
B

Ci(xb − xa)Cj(yb − ya)Ck(zb − za)

dxadxbdyadybdzadzb (1)

where Kijk acts as dimensional normalization factor, and C±1(.) are
the characteristic functions of the positive and negative real semi-
axis (0, +∞) and (−∞, 0), respectively. In particular, C0(·) =
δ(·) denotes the Dirac’s function, and acts as a characteristic func-
tion of the singleton set {0}. Weights between A and B are orga-
nized in a 3 × 3 × 3 matrix (w(A, B)), of indexes i, j, k. As a
particular case, it can be noticed that Eq.(1) also holds if A and B
are coincident (i.e., A ≡ B).

In Eq.(1), the weights with one or two null indexes (i.e., wi,0,0,
wi,j,0, wi,0,k, w0,j,0, w0,j,k, w0,0,k and w0,0,0) are computed by in-
tegrating a quasi-everywhere-null function (the set of point pairs that
are aligned or coincident has a null measure in the six-dimensional
space of Eq.(1)). The Dirac function appearing in the expression of
C0(·) reduces the dimensionality of the integration domain to enable
a finite non-null measure. To compensate this reduction, normal-
ization factors Ki,j,k(A, B) have different dimensionality whether
indexes i, j and k are equal to zero or take non-null values:

K±1,±1,±1 = |A||B| K0,0,0 = (|A||B|) 1
2

K±1,0,0 = LALBHABDAB K±1,±1,0 = LALBHAHBDAB

K0,±1,0 = LABHAHBDAB K±1,0,±1 = LALBHABDADB

K0,0,±1 = LABHABDADB K0,±1,±1 = LABHAHBDADB

(2)

where (see Fig.2(b)): |A| and |B| are the volumes of A, and B; LA,
HA, DA, LB , HB and DB are the width, height and depth of the
3D minimum embedding rectangles of A and B, respectively; LAB ,
HAB and DAB are the width, height and depth of the 3D minimum
embedding rectangles of the union of A and B, respectively.
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Fig. 2. (a) Walkthroughs connecting two pairs of points in entities
A and B. In each pair, the first point is in A, the second in B; (b)
Measures on A and B appearing in normalization factors of Eq.(2).

The twenty-seven weights of the 3DWWs are reflexive (i.e., wi,j,k(A, B) =
w−i,−j,−k(B, A)), and invariant with respect to shifting and scaling.

2.2. WWs between Linear Entities in 3D

Computation of spatial relationships between linear entities in 3D di-
rectly descends from the general case, in that Eq.(1) sums up terms
provided by individual pairs of points. In the case of 3D linear enti-
ties (curves), the main difference is that volumetric integrals become
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curvilinear integrals extended to the length of two curves. In prac-
tice, the computation is obtained by using a uniform voxelization of
the space. In so doing, voxels which intersect with the curve are re-
garded as equivalent to 3D points and take part to the computation of
the weights in Eq.(1). A trade-off between accuracy and computa-
tional complexity is used to define the grain of the hyper-rectangular
decomposition.

3. MATCHING FACE REPRESENTATIONS

According to the modeling technique introduced in Sect.2, a generic
face model F , is described by a set of NF wrinkles. In that WWs
are computed for every pairs of wrinkles (including the pair com-
posed by a wrinkle and itself), a face is represented by a set of
NF · (NF + 1)/2 relationship matrixes. This model is cast to a
graph representation by regarding face wrinkles as graph nodes and
their mutual spatial relationships as graph edges:

G
def
= < N, E, α, β >

N = set of nodes
E ⊆ N × N = set of edges
α : N �→ LN , nodes labeling function
β : E �→ LE , edge labeling function

where LN and LE are the sets of nodes and edge labels, respectively.
In our framework, α is the function that assigns to a node nk the self-
relationship matrix w(nk, nk) computed between the wrinkles asso-
ciated to the node and itself. In addition, α associates the node with
a type which distinguishes between ridge nodes and ravine nodes.
The edge labeling function β assigns to an edge [nj , nk], connect-
ing nodes nj and nk, the relationship matrix w(nj , nk) occurring
between the wrinkles of the two nodes.

In order to compare graph representations, distance measures for
node labels, and for edge labels have been defined. Both of them,
rely on a distance measure D defined between WWs. This is derived
by first computing three directional weights, taking values within 0
and 1, on the eight corner weights of the 3DWWs matrix (all terms
are intended to be computed between two curves A and B):

wH = w1,1,1 + w1,−1,1 + w1,1,−1 + w1,−1,−1 (3)

wV = w−1,1,1 + w1,1,1 + w−1,1,−1 + w1,1,−1

wD = w1,1,1 + w1,−1,1 + w−1,1,1 + w−1,−1,1

which account for the degree by which B is on the right, up and in
front of A, respectively. Similarly, seven weights account for the
alignment along the three reference directions of the space:

wH0 = w0,1,1 + w0,−1,1 + w0,1,−1 + w0,−1,−1 (4)

wV0 = w1,0,1 + w−1,0,1 + w−1,0,−1 + w1,0,−1

wD0 = w1,1,0 + w1,−1,0 + w−1,1,0 + w−1,−1,0

wHV0 = w0,0,1 + w0,0,−1 wHD0 = w0,1,0 + w0,−1,0

wV D0 = w1,0,0 + w−1,0,0 wHV D0 = w0,0,0

where wH0 , wV0 , wD0 measure alignments in which the coordinates
X , Y and Z do not change, respectively; wHV0 , wHD0 , wV D0 , mea-
sure alignments where coordinates XY , XZ and Y Z do not change,
respectively; and wHV D0 accounts for overlap between points of A
and B. Based on previous weights, similarity in the arrangement
of pairs of curves can be evaluated in terms of a distance D(w, w′)
obtained by combining the differences between homologous coeffi-
cients in the space of 27-tuples of 3DWWs. In terms of the weights

of Eqs.(3)-(4), this can be expressed as:

D(w, w′) = λH |wH − w′
H | + λV |wV − w′

V | + λD|wD − w′
D|

+λH0 |wH0 − w′
H0 | + λV0 |wV0 − w′

V0 | + λD0 |wD0 − w′
D0 |

+λHV0 |wHV0 − w′
HV0 | + λHD0 |wHD0 − w′

HD0 |
+λV D0 |wV D0 − w′

V D0 | + λHV D0 |wHV D0 − w′
HV D0 |

where λH , λV , λD , λH0 , λV0 , λD0 , λHV0 , λHD0 , λV D0 and λHV D0 ,
are non-negative numbers with sum equal to 1.

Distance D can be proven to exhibit the five properties that are
commonly assumed as axiomatic basis of metric distances. In addi-
tion, due to the integral nature of weights wijk, D satisfies a property
of continuity which ensures that slight changes in the mutual posi-
tioning or in the distribution of points in two sets A and B result in
slight changes in their 3DWWs. This has a main relevance in ensur-
ing robustness of comparison.

Matching a template face graph T , and a gallery reference face
graph R, involves the association of the nodes in the template with
a subset of the nodes in the description. Using an additive compo-
sition, and indicating with Γ an injective function which associates
nodes tk in the template graph with a subset of the nodes Γ(tk) in
the reference graph, this is expressed as follows:

µΓ(T, R)
def
=

λ

NT
·

NT�

k=1

D(w(tk, tk), w(Γ(tk), Γ(tk))) + (5)

+
2(1 − λ)

NT (NT − 1)
·

NT�

k=1

k−1�

h=1

D(w(tk, th), w(Γ(tk), Γ(th)))

where the first summation accounts for the average distance scored
by matching nodes of the two graphs, and the second summation
evaluates the mean distance in the arrangements of pairs of nodes in
the two graphs. In this equation, NT is the number of nodes in the
template graph T , and λ ∈ [0, 1] balances the mutual relevance of
edge and node distance.

In general, given two graphs T and R, a combinatorial num-
ber of different interpretations Γ are possible, each scoring a differ-
ent value of distance. According to this, the distance µ between T
and R is defined as the minimum under any possible interpretation
Γ: µ(T, R) = minΓ µΓ(T, R). In so doing, computation of the
distance becomes an optimal error-correcting (sub)graph isomor-
phism problem, which is a NP-complete problem with exponential
time solution algorithms. Since the proposed modeling technique
results into complete graphs with a relatively large number of nodes
(i.e., typical models have more than 20 wrinkles, almost equally di-
vided between ridges and ravines), to improve the computational ef-
ficiency, we relaxed the requirement of optimality by accepting sub-
optimal matches. This is obtained by imposing that cross-matches
between nodes of different type is not allowed, and renouncing to in-
clude in the distance minimization the relationships between nodes
of different type. According to this, the distance µ(T, R) is com-
puted as the sum of three separated components:

µ(T, R) = min
Γa

[µΓa(Ta, Ra)] + min
Γb

[µΓb(Tb, Rb)] + (6)

+(1 − λ) · µs(w(Ta, Tb), w(Γa(Ta), Γb(Tb)))

where Ta, Ra and Tb, Rb are the sub-graphs composed by ridge
and ravine nodes in the template and reference models, respectively.
Optimal solutions minΓa and minΓb in matching sub-graphs are
computed by using the algorithm in [12]. Finally, the third term
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of Eq.(6), accounts for the relationships distance occurring between
ridge nodes and ravine nodes in the matched sub-graphs:

µs(w(Ta, Tb), w(Γa(Ta), Γb(Tb))) =
1

NTa · NTb

· (7)

·
�

tk∈Ta

�

th∈Tb

D(w(tk, th), w(Γa(tk), Γb(th)))

Without loss of generality, Eqs.(5)-(7) assume that the number of
nodes in template graphs (NTa , NTb ), are not greater than the num-
ber of nodes in the reference graphs (NRa , NRb ). In fact, if NTa >
NRa or NTb > NRb , graphs can be exchanged due to the reflex-
ivity of 3DWWs, and the normality in the sum of their eight corner
weights.

4. EXPERIMENTAL RESULTS

The proposed model for description and matching of faces has been
experimented using models from the GavabDB database [13] which
includes three-dimensional facial surface models of 61 people (45
male and 16 female). The whole set of people are Caucasian and
most of them are aged between 18 and 40. For each person, 7 dif-
ferent models are taken—differing in terms of viewpoint or facial
expression—resulting in 427 facial models. In particular, there are
2 frontal and 2 rotated models with neutral facial expression, and 3
frontal models in which the person laughs, smiles or exhibits a ran-
dom gesture. All models are automatically processed, as described
in the previous sections, so as to extract a graph based description of
their content encoding prominent characteristics of individual wrin-
kles as well as their relative arrangement.

In order to assess the effectiveness of the proposed solution for
face identification, we performed a set of recognition experiments.
In these experiments, one of the two frontal models with neutral ex-
pression provided for each person is assumed as reference (gallery)
model for the identification. Results are given in Tab.1 as matching
accuracy for different categories of test models.

Test category Matching Accuracy

frontal - neutral gesture 91%
frontal - smile gesture 83%
frontal - laugh gesture 80%
frontal - random gesture 77%
rotated looking down - neutral gesture 78%
rotated looking up - neutral gesture 77%

Table 1. Matching accuracy for different categories.

It can be noted that the proposed approach provides a quite high
recognition accuracy also for variations in face expression. This can
be intuitively motivated by the fact that the geodesic distance be-
tween vertices of the mesh is almost invariant to facial expression
changes [14]. However, large face variations as those associated to
random gestures determine a lower accuracy in the recognition rate.

Finally, in Fig.3 recognition examples are reported for three test
faces of different subjects. For each case, on the left the probe face
is shown, while on the right the correctly identified reference face is
reported. These models also provide examples of the variability in
terms of facial expression of face models included in the gallery.

5. CONCLUSIONS

In this paper, we have proposed an original solution to the prob-
lem of 3D face recognition. The basic idea is to compare 3D face

Fig. 3. Three recognition examples. For each pair, the probe (on the
left) and the correctly identified model (on the right) are reported.

models by using the information provided by their salient wrinkles.
To this end, an original framework has been developed which pro-
vides two main contributions. First, 3D face models are described
by salient curves which are extracted as curvature ridges and ravines
in 3D dense meshes. Then, a theory for modeling spatial relation-
ships between curves in the 3D domain has been developed. Finally,
we proposed a graph matching solution for the comparison between
3DWWs computed on curves extracted from a template model and
those of reference models. The viability of the approach has been
validated in a set of recognition experiments.
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