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ABSTRACT

The synthesis of facial expression with control of intensity
and personal styles is important in intelligent and affective
human-computer interaction, especially in face-to-face inter-
action between human and intelligent agent. We present a
facial expression animation system that facilitates control of
expressiveness and style. We learn a decomposable genera-
tive model for the nonlinear deformation of facial expressions
by analyzing the mapping space between low dimensional
embedded representation and high resolution tracking data.
Bilinear analysis of the mapping space provides a compact
representation of the nonlinear generative model for facial
expressions. The decomposition allows synthesis of new fa-
cial expressions by control of geometry and expression style.
The generative model provides control of expressiveness pre-
serving nonlinear deformation in the expressions with simple
parameters and allows synthesis of stylized facial geometry.
In addition, we can directly extract the MPEG-4 Facial Ani-
mation Parameters (FAPs) from the synthesized data, which
allows using any animation engine that supports FAPs to ani-
mate new synthesized expressions.

1. INTRODUCTION

In intelligent and affective computing, computers need abili-
ties not only to recognize human emotion but also to express
emotions to convey affections to the human [1]. Conversa-
tional agents are frequently used in affective computing to
express emotions even though computers that have very dif-
ferent bodies can be used to display emotions [2]. Facial ex-
pressions, however, are the main communication channel of
emotions in face-to-face interactions. We present a facial an-
imation system for effective emotion communications for in-
telligent agents.

It is important to generate subtle details of facial expres-
sion that convey personality and intensity in facial expres-
sions. We want to generate facial expressions that give the
appearance with different expressiveness and with different
personality in emotion expressions. Our research is related
to emotional appearance and multiple levels of emotion gen-

eration in affective computing [3]. The challenging aspects
in realistic facial expression synthesis are capturing details of
facial expression including small nuances [4] in different per-
sons and generating new stylized expressions with the control
of expressiveness. We learn nonlinear mapping of facial mo-
tions in order to capture nonlinear deformations in facial ex-
pressions. The decomposition of the mapping space using bi-
linear model allows us to parameterize subtle expression char-
acteristics in different people with realistic facial expression
synthesis. We present the representation of facial expression
using a generative model in addition to the high resolution
tracking in Sec. 2.

We provide control of intensity and personality in syn-
thesized facial expressions. Exaggerations of differences be-
tween an expressive face and a neutral face enhances intensity
of the given expression [5]. The exaggeration of differences in
geometry of a person face from standard face geometry syn-
thesizes stylized face. We also generate new stylized expres-
sion by combination of existing styles. The scaling of facial
motion provides control of expressiveness, intensity of facial
expressions. In Sec. 3.1 and 3.2, we explain the synthesis of
facial expression with expressiveness control and stylized fa-
cial geometry and the estimation of the animation parameter
using the proposed generative model.

From synthesized facial animation, we extract MPEG-4
facial animation parameters (FAPs), low resolution animation
parameters to drive facial animation in other animation engine
for conversational agents. As we have very high resolution
tracking data for facial expression and synthesis of the facial
nodal points, we can extract FAPs after identifying feature
points for parameter extractions from a generic model used
for tracking. Extracted FAPs are used to synthesize facial an-
imation in animiation softwares that support MPEG-4 FAP
format. Synthesis results of facial expressions using FAPs are
presented in Sec. 3.3.

Related Works: Synthesis of facial expressions is preformed
by modeling facial expressions using generative models and
controlling model parameters. Researchers have used linear
models (PCA [6]) and variations such as bilinear models [7, 8]
and multilinear tensor models for facial expression analysis
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and synthesis [8, ?]. However, a major limitation of such
models is modeling the facial expression in linear subspaces.
In this paper, we analyze expression in a nonlinear mapping
space and synthesize new facial expressions based on the de-
composition of the mapping space.

Exaggerations of face were investigated by Brennan [11]
in computer graphics to develop a caricature generator using
user’s line drawing input with manual correspondence. Ex-
aggeration was controlled by scaling difference in the corre-
sponding points. There are few works related to 3D facial
caricature and facial expression exaggeration. We provide
stylized facial expressions which support caricature of face
geometry and exaggeration of 3D facial motions.

2. GENERATIVE MODELS FOR HIGH
RESOLUTION FACIAL EXPRESSION SYNTHESIS

We achieve high resolution tracking of facial expressions from
dense clouds of 3D range data using harmonic maps [14].
Tracking data provides an efficient non-rigid 3D motion track-
ing with correspondences between different frames of the same
sequences as well as between different sequences.

2.1. Learning nonlinear mapping space of facial expres-
sions

Facial motion can be described by the displacements of 3D fa-
cial nodal points of the general face geometry used for track-
ing. As a result of high resolution tracking with one-to-one
intra-frame correspondence, we can represent facial expres-
sions by motion vectors for the vertices of a generic face
mesh. Let vt ∈ R3N×1 be locations of 3D points at time in-
stance t representing N facial nodal points in a 3-dimensional
space, where N is the number of nodal points in a dense
generic facial model. The trajectory of the 3D nodal points
is the combination of rigid head motion and facial motion,
which can be described as

vt = Tαt
yt = Tαt

(y0 + mt) = Tαt
(g + mt) , (1)

where Tαt
is the head motion at time t, yt is the 3 × N face

nodal point locations at time t in face centered coordinate and
y0 = g is the facial geometry at the initial frames. We assume
that the captured facial expression starts from a neutral face.
The global rigid transformation parameter α comes from the
tracking results.

Tracking data are collected from multiple people for learn-
ing stylized facial expression models. The displacement in
local coordinate of every facial nodal point from the tracking
data of expression style s can be described as

vs
t = Tαs(gs + ms

t ) , (2)

where Tαs is the global transformation by head motion which
depends on expression style and type, g s is the facial geome-
try of each person, and ms

t is the facial expression motion.

The main problem in facial expression animation is how
to model and control the facial expression motion, ms

t , and
facial geometry gs. Both of them depend on the person. The
facial motion undergoes nonlinear deformations and it is of
high dimension. We derive a low dimensional representation
for facial motion using conceptual manifold embedding. Unit
circle is used in the embedding of facial expression which
is cyclic in the sense that the expression changes from neu-
tral expression → target expression → neutral expression in
the tracking data set. The conceptual manifold is homeomor-
phic to actual data-driven manifold using nonlinear dimen-
sionality reduction like LLE (locally linear embedding) [15]
that finds intrinsic configuration representation in low dimen-
sional space [16].

Given a set of distinctive facial motion sequence M s =
[ms

1m
s
2 · · ·ms

Ns
]T and its embeddingX s = [xs

1x
s
2 · · ·xs

Ns
]T ,

we can learn nonlinear mapping function f s(x) that satisfies
fs(xi) = ms

i , i = 1 · · ·Ns, where Ns is the number of cap-
tured motion frame for style s. Generalized radial basis func-
tion (GRBF) interpolation [17] is used to learn mapping in
the form f s(x) = Bsψ(x) where each row in the matrix B
represents the interpolation coefficients for corresponding el-
ement in the input. i.e., we have d simultaneous interpolation
functions each from 2D to 1D. The mapping coefficients can
be obtained by solving the linear system

[ms
1 · · ·ms

Ns
] = Bs[ψ(xs

1) · · ·ψ(xs
Ns

)] (3)

The mapping function contains all the information to generate
new interplated motion for given xt. For a given kernel ψ(x),
the matrix Bs captures the facial motion characteristics for
expression style s. As a result, the facial expression of person
style s can be represented by

vs
t = Tαs(g

s + Bsψ(xt)). (4)

However, this model requires to high dimensional parameters
gs and Bs for each person to generate a new facial expres-
sion.

2.2. Decomposition of facial geometry and facial motion

We achieve compact and orthogonal representation for face
geometry and facial motion mapping space using bilinear anal-
ysis. We can represent matrix Bs as a vector bs by column
stacking. We collect mapping vector bs as

F = [b1b2 · · · bNs ] , (5)

where Ns is the number of facial expression styles. By apply-
ing an asymmetric bilinear model [7], we can represent ge-
ometry based on geometry basis E and geometry style vector
ss

b as follows:
F s = Ess

b . (6)

We apply the bilinear analysis for facial geometry and achieve
representation of person geometry based on geometry basis
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D and geometry style vector ss
g as follows:

Cs = Dss
g , (7)

where the dimension of the style vector ss
g, a compact repre-

sentation of person geometry, is Ns(<< 3N).
Now, the decomposable nonlinear generative model can

be expressed as

vs(t) = Tαs
t

(
Dgss

g + unstacking(Ess
b)ψ(x(t))

)
, (8)

where unstacking(·) means converting vectorized represen-
tation to original matrix by unstacking column. The gener-
ative model captures nonlinearity in the mapping space and
provides compact control parameters for expression style and
expression geometry variations in facial expression synthesis.
In addition, it supports generation of stylized geometry and
facial expression.

3. SYNTHESIS OF STYLIZED AND EXPRESSIVE
FACIAL EXPRESSIONS

New facial expressions can be generated by new geometry
style vectors and new facial motion style vectors. Linear weight-
ing of the existing style vector can be used to generate new
style vector for synthesis.

snew
g = α1s

1
g + α2s

2
g + · · · + αNes

Ns
g ,

snew
b = β1s

1
b + β2s

2
b + · · · + βNss

Ns

b , (9)

where
∑

i αi = 1, and
∑

j βj = 1. αi controls the weight
for geometry style si

g, and βj specify the weight for facial

motion style sj
b. New facial expression can be generated by

using new styles as

vnew(t) = Tαnew
t

(
Dgsnew

g + unstacking(Esnew
b )ψ(x(t))

)
.

(10)
We can add additional parameters to synthesize more stylized
geometry and to control expressiveness.

3.1. Stylized facial geometry synthesis

New stylized facial geometry can be synthesized using mean
geometry style. Stylized face geometry exaggerates facial
features that are different from standard face, or average face.
As we get tracking data with correspondence between differ-
ent subjects, the mean facial geometry can be the arithmetic
mean of individuals’ face geometry. The same result can be
achieved using equal weighting of all the style vectors. We
can represent using mean style s̄ and scale factor γ as

gexaggerated = Dg(γ(ss
g − s̄g) + s̄g) . (11)

The parameter γ controls the amount of exaggeration based
on difference from the average face geometry. When γ = 1,

the new face is the same face as the original face. When γ <
1, the new face closes to standard face and the same as average
face at γ = 0. Usually, caricatured faces are generated using
γ > 1. Fig. 1 shows mean geometry, and style exaggerated
geometries.

Fig. 1. Original image and its 3D caricatures: Col.(a): Original
images Col. (b): γ = 0.0 (mean geometry), Col. (c): γ = 0.7, Col.
(d): γ = 1.0, Col. (e): γ = 1.3.

3.2. Intensity control in facial expressions

We can control expressiveness in the synthesized facial ex-
pression by scaling the facial motion. We can extend the gen-
erative model using motion scaling parameter τ .

mexaggerated
t = τ(unstacking(Esnew

b )ψ(x(t))) , (12)

The scaling of the motion vector affects different strength or
feeling of the expression. Reducing the facial motion scale
parameter τ causes milder or weak expression than the orig-
inal ones and stronger expression when we increase scaling
parameter. The overall generative model is combination of
stylized facial geometry and facial motion with expressive-
ness control. Fig. 2 show examples of scaling effects, which
shows different expressiveness of facial motion according to
scale parameters in smile expression sequence. Facial expres-
sions in different intensities are generated with preserving de-
tails in the expression.

Fig. 2. Intensity control by scaling factors in facial expres-
sions: Row: τ changed by 0.5, 1.0, 1.25, 1.75 from top row to
button row. Column: Sampled expression sequence(neutral → tar-
get)
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3.3. Extraction of FAPs and animation in intelligent agents

MPEG-4 facial animation parameters (FAPs) are part of the
specifications of the international standard for efficient cod-
ing of shape and animation of human face and bodies. FAPs
are used not only for the web and mobile applications but also
emotion recognition and talking head human computer inter-
face [18]. Computer vision techniques are used to extract FAP
parameters from video. Optical marker based motion capture
systems are used to get accurate parameters as in [19]. Our
high resolution tracking of facial motion by generic model
with correspondence allows accurate extraction of FAPs with-
out markers.

As we have high resolution tracking of 3D facial nodal
points with correspondence between frames and in different
sequences, we can estimate the facial animation parameters
(FAPs) if we once identify the nodal points corresponding to
FAP nodes. Our generic facial geometry model does not cre-
ate for FAP parameters. However, it has 8K 3D nodal points
in high resolution tracking and 1K in low resolution track-
ing. We can easily identify nodal points to calculate FAPs.
In Fig. 3, the first colume shows identified nodal points in
neutral face. In the following columes, it shows synthesized
facial expressions (a) and corrresponding re-synthesis results
(b) of expressions using extracted FAPs from the synthesis
data. We used Visage Technologies software supplied by Vis-
age Technologies AB to convert FAPs into binary format and
to generate facial expressions in agents.

(a) Feature points used for FAPs estimation and synthesized expressions

(b) Neutral face and re-synthesized facial expressions in agents

Fig. 3. Feature points and re-synthesis of facial expressions

4. CONCLUSION AND FUTURE WORK

We presented a facial expression synthesis system using a
nonlinear generative model from tracking data of high reso-
lution 3D nodal points with correspondences between frames
and in different persons. The generative model can synthe-
size, not only personalized facial expressions including sub-
tle expressions, but also expressiveness controlled ones. In
addition, we can extract FAPs from the synthesized data and

can generate facial expression by any animation software sup-
porting MPEG-4 FAPs. We plan to perform evaluation of our
system in human-intelligent agent interaction situation to see
the effect of expressiveness and personalization in intelligent
agent appearance.
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