

Abstract— In this paper, a temporal resolution reduction

transcoding method that transforms an MPEG-4 video bitstream

into an H.264 video bitstream is proposed. The block mode

statistics and motion vectors in the MPEG-4 bitstream are utilized

in the H.264 encoder for block mode conversion and motion

vector interpolation methods. The proposed motion vector

interpolation methods are developed not to perform brute-force

motion estimation again in the H.264. In the experimental results,

the proposed methods achieve 3~4 times improvement in

computational complexity compared to the cascade pixel-domain

transcoding, while the PSNR (peak signal to noise ratio) is

degraded with 0.2~0.9dB depending on the bitrates.

Index Terms— MPEG-4, H.264, Motion Vector, Motion

Estimation, Block Mode

I. INTRODUCTION

ECENTLY multimedia transmission is utilized widely in

network environments. Especially, the video occupies high

bandwidth in multimedia communications. Therefore, various

multimedia compression standards have been established for

faster video transmission and better quality. Currently, the

H.264 (MPEG-4 AVC (Advanced Video Coding)) codec which

has better coding performance than the previous coding

standards [1]-[2] was completed [3]. As the number of content

representation formats increase, the transcoding methods for

video adaptation and digital library have been researched

[4]-[5]. Using video transcoding techniques, the format of a

pre-coded video can be converted to other formats to adapt to a

lower transmission bandwidth or smaller display screen. In this

paper, when transforming an MPEG-4 SP (Simple Profile)

bitstream into an H.264 BP (Baseline Profile) bitstream by

frame rate reduction [6]-[7], a new macroblock (MB) mode

conversion based on MB statistics are proposed. Experimental

results compare the cascade pixel-domain transcoding to the

proposed transcoding method. This paper is organized as

follows. Section II describes MB mode conversion from the

MPEG-4 block modes to the H.264 block modes. In a reduced

frame rate, the proposed MPEG-4 to H.264 transcoding

methods by using motion vector interpolations is introduced in

section III. Section IV shows the experimental results and the

Manuscript received February 15, 2006.

The authors are with the School of Computer Engineering, Sejong

University, 98 Kunja-Dong, Kwangjin-Gu, Seoul, 143-747, Korea. Also they

are with DMS Lab.

E-mail : yllee@sejong.ac.kr

conclusions are provided in section V.

II. PROPOSED BLOCK MODE CONVERSION

As shown in Table 1, the H.264 standard has some improved

features such as the 4× 4 integer transform, multiple reference

frames, universal variable length coding (UVLC) or

context-adaptive variable length coding (CAVLC), and the

various block types for the quarter-pixels motion estimation

(ME) and motion compensation (MC) in comparison to the

MPEG-4. The H.264 performs the quarter-pixels ME/MC of

the seven variable blocks such as the 16× 16, 16× 8, 8× 16, and

8× 8 MC units for each 16× 16 MB and 8× 4, 4× 8 and 4× 4

MC units for each 8× 8 block. The H.264 encoder part of Fig. 1

performs the variable block size MC explained above.

Therefore, there are many block modes in each MB, including

the seven Inter modes, Intra16 × 16, Intra4 × 4, and SKIP

modes, while the MPEG-4 performs the half-pixel ME/MC of

the two blocks, namely the 16× 16 and 8× 8 blocks for each

MB, so that the MPEG-4 has the Inter16× 16, Inter8× 8, Intra,

and SKIP modes for each MB. Therefore the block mode

conversion from the MPEG-4 MB to the H.264 MB should be

estimated for MPEG-4 to H.264 transcoding. From the coding

tools and block modes in each MB of Table 1, the H.264 has

much higher computational complexity compared to the

MPEG-4. However, thanks to the new complex coding tools in

the H.264, the H.264 can compress approximately 1.5 times

more data than the conventional H.263 or MPEG-4.

As shown in Fig. 1, the best performance of transcoding from

an MPEG-4 bitstream to a H.264 bitstream is achieved by a

cascade pixel-domain transcoding that first decodes the

MPEG-4 video bitstream completely in the MPEG-4 decoder

and then re-encodes the reconstructed video in the H.264

encoder. However, it requires high computational complexity

MPEG-4 to H.264 Transcoding using

Macroblock Statistics

Yung-Ki Lee, Sung-Sun Lee, and Yung-Lyul Lee

R

TABLE I

CODING TOOLS OF MPEG-4 SP (SIMPLE PROFILE) AND H.264 BP (BASELINE

PROFILE)

 MPEG-4 H.264

DCT 8× 8 DCT
4× 4 Integer
Transform

ME/MC Unit 16× 16, 8× 8
16× 16, 16× 8, 8× 16,

8× 8, 8× 4, 4× 8,
4× 4

MC Accuracy 1/2 pel 1/4 pel

VLC Table Separable Table
Universal VLC,

CAVLC

Intra
Prediction

AC/DC Prediction
(16× 16Intra)

Spatial Prediction
(16× 16 or 4× 4Intra)

Loop filter None Deblocking Filter

571­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

because of performing ME/MC and block mode decision for

every MB in the H.264. This is not suitable at a real time

situation, so that we propose to re-use the incoming MPEG-4

motion vectors and block modes for the outgoing H.264 video

bitstream. Fig. 2 shows the proposed temporal resolution

reduction transcoding that reduces the computational

complexity by using the MPEG-4 motion vector interpolation

method and re-using the MPEG-4 block modes information in

each MB. The proposed MPEG-4 to H.264 transcoding method

 can be used to reduce the bitrate requirements imposed by a

network and to satisfy processing limitation imposed by a

H.264 terminal. In order to reuse the MPEG-4 block mode in

the H.264 encoder, the analysis of the block mode conversion

ratio of MPEG-4 block mode to H.264 block mode is

performed in the cascade transcoder for various test sequences

in QCIF and CIF resolutions as shown in Table 2 and 3,

respectively. The Inter16× 16 block mode in the MPEG-4 is

converted to the Inter16 × 16, Inter16 × 8, Inter8 × 16 or

Inter8× 8 in the H.264 with the probability of 42.2%, 12.4%,

13.6% and 9.6% in Table 2 and with the probability of 43.6%,

13.5%, 12.8% and 14.4%, respectively, in Table 3. The SKIP

mode in MPEG-4 is converted to SKIP or Inter16× 16 mode in

the H.264 with the probability of 90.9% and 5.8% in Table 2

and with the probability of 89.4% and 7.2% in Table 3,

respectively. To calculate the MB conversion statistics, the

target bitrates are set to 130 ~250 kbps in QCIF resolution and

200 to 384 kbps.

The proposed MPEG-4 to H.264 block mode conversion

method in Fig. 3 is decided by the analysis of the probability of

frequently occurring H.264 block modes for a given MPEG-4

block mode from Table 2 and 3. In Table 2 and 3, the frequently

occurring block modes are shown in dark gray.

Inter8× 16, Inter8× 8 or Skip block mode in H.264 by finally

calculating the rate-distortion optimization (RDO) module [8]

that selects the optimum block mode among the five blocks in

consideration of both the minimum mean-square error and the

minimum bit allocations for the Inter16× 16 block mode in the

MPEG-4 in Fig. 3(a). If the RDO is calculated for all H.264

block modes such as the seven Inter, Intra16× 16, Intra4× 4,

and SKIP block modes, it requires high computational

complexity so that the possible block mode conversion is set as

Fig. 3. The Inter8× 8 block mode in the MPEG-4 is converted

to the Inter8× 8, Inter8× 4, Inter4× 8, Inter4× 4, Inter16× 16,

Inter16× 8 or Inter8× 16 block mode in H.264 by using RDO

among the seven block modes as shown in Fig. 3(b).

The SKIP mode in the MPEG-4 is converted to the SKIP,

Inter16× 16 block mode in the H.264 by using the RDO among

the two block modes as shown in Fig. 3(c). Finally, in Fig. 3(d),

the Intra16× 16 block mode in the MPEG-4 is converted to the

Intra16× 16 or Intra4× 4 block mode in the H.264 by using the

RDO. Also, the Intra4× 4 mode in the H.264 that calculates the

nine spatial directional prediction modes and the Intra16× 16

VLD Q-1 IDCT

MEMORYMC

MPEG-4 MOTION VECTORS

(DCT + Q) UVLC

MEMORYMC

MPEG-4 DECODER H.264 ENCODER

MPEG-4
bitstream

Decoded
Video

LOOP FILTER

(DCT + Q)-1

Fig. 1. Cascade MPEG-4 to H.264 transcoding

VLD Q-1 IDCT

MEMORYMC

MPEG-4 MOTION VECTORS

(DCT + Q) UVLC

MEMORYMC

MPEG-4
bitstream

Decoded
Video

MOTION VECTORS + MB INFORMATION

LOOP FILTER

(DCT + Q)-1

MPEG-4 DECODER H.264 ENCODER

Temporal resolutionn
reduction

Fig. 2. Proposed MPEG-4 to H.264 transcoding to lower temporal resolution

TABLE II

THE MB CONVERSION PERCENT OF MPEG-4 MB TYPES TO H.264 MB TYPE IN CASCADE TRANSCODING FOR VARIOUS QCIF SEQUENCES, IN WHICH THE TARGET

BITRATES ARE APPROXIMATELY 130~250KBPS.

INTER MODE INTRA MODE

P8× 8
H.264 (output)

MPEG-4 (input) (%) 16× 16 16× 8 8× 16
8× 8 8× 4 4× 8 4× 4

16× 16 4× 4
SKIP TOTAL

INTER16× 16 42.2% 12.4% 13.6% 9.6% 1.7% 2.1% 1.2% 1.1% 0.8% 15.5% 100%

INTER8× 8 8% 11.8% 15.8% 28.6% 5.3% 6.7% 9.5% 0.7% 13.5% 0.1% 100%

SKIP 5.8% 1.1% 1.1% 0.4% 0.1% 0.1% 0% 0.5% 0% 90.9% 100%

INTRA16× 16 0% 0% 0% 2.6% 0% 0% 7.9% 21.1% 68.4% 0% 100%

TABLE III

THE MB CONVERSION PERCENT OF MPEG-4 MB TYPES TO H.264 MB TYPE IN CASCADE TRANSCODING FOR VARIOUS CIF SEQUENCES. , IN WHICH THE TARGET

BITRATES ARE APPROXIMATELY 200~384KBPS.

INTER MODE INTRA MODE

P8× 8
H.264 (output)

MPEG-4 (input) (%) 16× 16 16× 8 8× 16
8× 8 8× 4 4× 8 4× 4

16× 16 4× 4
SKIP TOTAL

INTER16× 16 43.6% 13.5% 12.8% 14.4% 4.3% 4.4% 2% 0.8% 0.5% 3.7% 100%

INTER8× 8 15.3% 13.5% 12.8% 27.5% 8.6% 8.7% 8.5% 0.4% 4.7% 0.1% 100%

SKIP 7.2% 0.9% 0.8% 0.2% 0% 0% 0% 1.5% 0% 89.4% 100%

INTRA16× 16 5.9% 3.5% 3.5% 8.2% 2.4% 1.2% 14.1% 8.2% 52.9% 0% 100%

58

mode in the H.264 that calculates four spatial directional

prediction modes need high computational complexity to

perform the RDO. To select an optimum mode for the Intra4× 4

for each prediction, the RDO for estimating nine Intra

prediction directions in each 4 × 4 Intra block mode is

simplified by calculating only mean square error (MSE) of

every Intra prediction direction instead of calculating rates and

distortion of those prediction modes. The Intra16× 16 is dealt

with in the similar way as the Intra4 × 4. The block mode

conversion from the MPEG-4 block modes to the H.264 block

modes in Fig. 3 was experimentally decided to avoid

unnecessary RDO calculations and to select efficient Intra

prediction modes fast for all Intra block modes in the H.264

standard.

III. MOTION VECTOR INTERPOLATION IN REDUCED FRAME

RATES

The cascade transcoder requires high computational

complexity because it must carry out ME/MC and MB mode

decision (RDO) for each MB again. To reduce the

computational complexity more, the proposed interpolation

methods for the motion vectors to reuse the MPEG-4 motion

vectors in the H.264 are introduced. When the frame rate is

reduced to a half for the bitrate reduction in network

environments, the frame dropping is needed in transcoder. In

Fig. 4(a), the n-th frame in H.264 corresponds to the (2n)-th

frame of MPEG-4 and the (2n-1)-th frame of MPEG-4 is

dropped. In order to find the motion vectors of the (n-1)-th

frame in the H.264, the motion vector interpolation, MV, for

the dropped (2n-1)-th frame in MPEG-4 should be performed.

A. Linear Interpolation (LI) of Motion Vectors

For motion estimation, the MPEG-4 standard has two Inter

block modes, namely the 16× 16 and 8× 8 block mode for each

MB. The motion vector of the 16× 16 block can be expressed as

the motion vectors of the four 8× 8 blocks in the 16× 16 block.

Therefore the motion vectors in all frames can be expressed as

the motion vectors of 8 × 8 block unit. Fig. 4(b) shows the

overlapped blocks for linear interpolation of the motion vectors

when frame dropping is needed in MPEG-4 to H.264

transcoding. The half-pixel motion vectors, mvi, i=1,2,3,4, of

the MPEG-4 in Fig. 4(b) are used for the motion vector

interpolation process. If the interpolated integer motion vector

in the (2n-1)-th frame in the MPEG is MV, the final integer

motion vector in the (n-1)-th frame of the H.264 can be

calculated by 0((1) / 2)mv MV+ + as shown in Fig. 4(a). MV is

calculated in Fig. 4 as follows:
4

1

4

1

(1)
()

2

()

i
i i

i

i i

i

mv
w h

MV

w h

=

=

+× ×
=

×
 (1)

where imv is a half-pixel motion vector of the current 8× 8

block in the (2n-1)-th frame of the MPEG-4. In eq. (1), wi and hi

is the overlapped block width and height, and MV is the integer

motion vector of the overlapped blocks. Fig. 4(b) and (c) show

the linear interpolation process.

IV. EXPERIMENTAL RESULTS

The experiments were conducted by using the MoMuSys

decoder that supports the MPEG-4 SP and the JM73 (Joint

Model) encoder that supports the H.264 (MPEG-4 Part10

AVC) BP. All experiments were carried out on a Pentium-IV

2.66 GHz, using several QCIF (Quarter Common Intermediate

Format, 176× 144) and CIF (Common Intermediate Format,

352× 288) sequences. Each image sequence has 300 frames

which were encoded in the MPEG-4 standard of 30Hz frame

rates. All video tools for the H.264 BP encoder were used for

MPEG-4 to H.264 transcoding. Only the first frame was

encoded as an INTRA frame (I-frame), and the others frames

were encoded as the INTER frames (P-frames) without the B

frame for the transcoded bitstream. An MPEG-4 bitstream of

30 Hz was transcoded into an H.264 bitstream of 15 Hz. In

order to improve coding efficiency due to incomplete motion

vector interpolations in eq. (1), motion vector refinement is

performed.

In order to decide the search window size of integer motion

vector refinement, the bitstreams of several QCIF and CIF

Inter

16 x 16

Inter

16 x 16

Inter

16 x 8
Inter

8 x 16

Inter

8 x 8

skip

Inter

8 x 8 Inter

8 x 4

Inter

4 x 8

Skip

Skip
Inter

16x16

Intra

16x16

Intra

4x4

Intra

16x16

MPEG-4

H.264

(a)

(b)

(c) (d)

Inter

16 x 16

Inter

8 x 8

Inter

16 x 8

Inter

8 x 16 Inter

4 x 4

MPEG-4

MPEG-4

H.264

H.264

Fig. 3. Proposed MPEG-4 to H.264 block mode conversion

Fig. 4. Overlapped blocks for linear interpolation of the half-pixel motion
vectors when the frame dorpping is needed in MPEG-4 to H.264 transcoding

59

resolutions encoded in MPEG-4 are cascade-transcoded with

increasing the motion vector window sizes by 1± , 2± , 3± ,

and so on. We set the search widow size to 1 from the simple

experiments empirically.

The complexity of the cascade transcoder is compared to that

of the proposed transcoder in Fig. 5. The computational

complexity reduction of the proposed method comes from the

ME/MC and block mode decision with RDO. The average

processing times of the ME/MC and block mode decision

between two transcoders are shown in Fig. 5.

 The bitrate-PSNR curves of the cascade pixel-domain

transcoding and the proposed transcoding methods using LI

method with the proposed block mode conversion are

compared for the “Foreman” QCIF sequence and “Tempete”

CIF sequence in Fig. 6(a) to (b), where the horizontal axis

represents the bitrate of transcoder and vertical axis represents

the PSNR of motion vector interpolation method in comparison

to the cascade pixel-domain transcoding. The proposed method

for the QCIF sequence shows similar performance. When the

proposed method is compared to the cascade pixel-domain

transcoding, PSNR is dropped 0.2dB at near 250 kbps and

maximum 0.9dB at near 130 kbps. In the CIF sequence, we

obtained 0.4 ~ 0.5 dB PSNR loss compared with the cascaded

transcoding. Fig. 7 shows the execution time of transcoding

method on two size sequences where the horizontal axis

represents the quantization parameter (QP) of the H.264

encoder and the vertical axis represents the total transcoder

execution time. The proposed method is 3-4.1 times faster than

the cascade transcoding in QCIF sequences and 3.3-4.3 times

faster than that in CIF sequences. The proposed method can be

considered as good interpolation method in the viewpoint of

hardware implementation. Since one of important factors in the

hardware implementation is the worst case complexity that

provides the fixed maximum computational complexity, we

believe that the hardware engineers will be favor of the

proposed method. In conclusion, the proposed method that can

be easily implemented on hardware can be considered as the

best interpolation method in the aspect of hardware

implementation.

V. CONCLUSIONS

In this paper, the transcoding methods that transform

MPEG-4 bitstream to H.264 bitstream are proposed by using

the MPEG-4 to the H.264 block mode conversion statistics and

the motion vector interpolation methods. Although the

proposed methods result in small degradation in PSNR, the

proposed methods requiring low complexity can be applied to

MPEG-4 to H.264 transcoder for video adaptation applications.

REFERENCES

[1] “Generic coding of Moving Pictures and Associated Audio Information:

Video”, ISO/IEC 13818-2. 2000.

[2] MPEG-4 Video Group, “MPEG-4 Video Verification Model Version

17.0”, ISO/IEC/JTC1/SC29/WG11 N3515, Jul. 2000.

[3] “Joint Final Committee Draft (JFCD) of Joint Video Specification (ITU-T

Rec. H.264 | ISO/IEC 14496-10 AVC)”, Joint Video Team (JVT) of

ISO/IEC MPEG and ITU-T VCEG, Jun. 2003.

[4] Vetro, A.; Christopoulos, C.; Huifang Sun, “Video Transcoding

Architecture and Techniques: An Overview”, IEEE Signal Processing

Magazine, vol.20, Issue: 2, Mar. 2003.

[5] J.L. Wu, S.J. Huang, Y.M. Huang, C.T. Hsu, and J.Shiu, “An efficient

JPEG to MPEG-1 transcoding algorithm”, IEEE Trans. Consumer

Electron., Vol.42, Issue: 3, pp.447-457, Aug. 1996.

[6] Mei-Juan Chen, Ming-Chung Chu, and Chih-Wei Pan, “Efficient Motion

Estimation Algorithm for Reduced Frame-Rate Video Transcoder”, IEEE

Trans. CSVT Vol.12, no.4, pp.269-275, Apr. 2002.

[7] Jeongnam Youn, Ming-Ting Sun, Chia-Wen Lin, “Motion Vector

Refinement for High-Performance Transcoding”, IEEE Trnas.

Multimedia, Vol.1, no.1, pp.30-40, Mar. 1999.

[8] Gary J. Sullivan and Thomas Wiegand, “Rate-Distortion Optimization for

video Compression”, IEEE SIGNAL PROCESSING MAGAZINE, pp

74-90, Nov. 1998.

ME/MC+RDO Time (msec/frame)

0

100

200

300

400

T
im

e
 (

m
se

c)
cascade

transcoding

proposed

transcoding

Fig. 5. Processing time comparison of the ME/MC+block mode decision parts

of the proposed method to the cascade transcoding in average.

Foreman(QCIF)

32

33

34

35

100 150 200 250
bitrate(kbps)

P
S

N
R

(d
B

)

Cascade

LI

Tempete(CIF)

28

29

30

31

32

200 300 400 500
Bitrate(kbps)

P
S

N
R

(d
B

)

Cascade

LI

(a) (b)

Fig. 6. Rate-Distortion curves: (a) “Foreman” and (b) “Tempete”

Foreman(QCIF)

0

20

40

60

80

100

23 25 27

QP

T
im

e
(s

e
c)

Cascade

LI

Tempete(CIF)

0

50

100

150

200

250

300

350

400

27 32 36

QP

T
im

e(
se

c)

Cascade

LI

(a) (b)

Fig. 7. Execution time comparison of the cascade pixel-domain transcoding to

the proposed transcodings: (a) “Foreman” and (b) “Mobile&Calendar”

60

