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ABSTRACT

We present a three-step post-processing method for in-
creasing the precision of video shot labels in the domain
of television news. First, we demonstrate that news shot se-
quences can be characterized by rhythms of alternation (due
to dialogue), repetition (due to persistent background set-
tings), or both. Thus a temporal model is necessarily third-
order Markov. Second, we demonstrate that the output of
feature detectors derived from machine learning methods
(in particular, from SVMs) can be converted into proba-
bilities in a more effective way than two suggested exist-
ing methods. This is particularly true when detectors are
errorful due to sparse training sets, as is common in this
domain. Third, we demonstrate that a straightforward ap-
plication of the Viterbi algorithm on a third-order FSM,
constructed from observed transition probabilities and con-
verted feature detector outputs, can refine feature label pre-
cision at little cost. We show that on a test corpus of TREC-
VID 2005 news videos annotated with 39 LSCOM-lite fea-
tures, the mean increase in the measure of Average Preci-
sion (AP) was 4%, with some of the rarer and more difficult
features having relative increases in AP of as much as 67%.

1. INTRODUCTION

News stories typically are reported as separate video episodes
reported over time and over different channels, with each
episode comprised of a sequence of related video shots.
One first step to the effective indexing and retrieval of all
related video episodes, across all times and all channels, is
the annotation of their individual shots using concept tags
derived from a formal ontology of visual features. A num-
ber of efforts have been made to derive and evaluate such
ontologies, with perhaps the most advanced being the the
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Large Scale Concept Ontology for Multimedia Understand-
ing (LSCOM); see [1] for an overview.

However, nearly all current work on video shot label-
ing assumes the temporal independence of shots. Shots are
annotated in isolation, or, equivalently, as if they had been
temporally scrambled. Nevertheless, there are good reasons
to suspect that temporal order is significant, and that it may
give exploitable cues for more accurate labeling. For exam-
ple, there are known limits on human visual info processing
that tend to bias the selection and editing of shots so that a
particular visual-temporal “texture” is preserved throughout
a video episode. Further, the economics of video news pro-
duction tend to limit editorial freedom; the reuse of nearly-
identical shots and shot sequences across widely separated
episodes have been noted and tracked by a number of re-
searchers.

The work reported here is inspired by the observation
that in related video formats such as drama and comedy
there has been ample recognition of shot rhythms; for ex-
ample, see [2]. Researchers have noted the prevalence of
video dialogue sequences, in which there is a nearly strict
alternating rhythm between two different shots types, but
where within each type the shots are nearly identical in fore-
ground and background. Likewise, action sequences have
been noted as being unusually diverse and almost random
in their feature sequences, deliberately conveying drama by
their lack of a steady rhythm. Both these sequences vary
greatly from what appears to be the implicit default shot
sequence rhythm of a steady repetition of most features,
particularly in backgrounds. These three rhythms— alter-
nation, repetition, and randomness—intuitively are also ob-
servable in video news episodes. They present an opportu-
nity for improving the automatic labeling of shots, by selec-
tively reinforcing detector response based on their rhythmic
reoccurrences.

The analysis and results that follow are based on a 62K-
shot subset of the 80 hours of news video annotated as part
of the TRECVID Video Annotation Forum of 2005, by over
100 participants via the web-based Efficient Video Annota-
tion (EVA) System [3], using a 39-feature ontology called
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LSCOM-lite. This ontology was derived in part by analyz-
ing of the strengths and weaknesses of a predecessor 133-
feature ontology used in a similar TRECVID effort in 2003.
The LSCOM-lite ontology appears to be better tuned for the
task; for example, the frequencies of annotation of the 17
most common features (Person, Face, Outdoor, Crowd, Stu-
dio, Sky, Entertainment, Building, Walking/Running, Veg-
etation, Car, Government-Leader, Urban, Road, Meeting,
Military, Computer/TV-Screen) appear to closely follow Zipf’s
law, just as do more established vocabularies such as the full
English language.

Nevertheless, the automated labeling of such concepts
remains inexact, and even the measures of quality of label-
ing are controversial. One very conservative measure is Av-
erage Precision (AP), defined as the average, over the size
of the ground truth, of the instantaneous precisions of a se-
quence of experiments. Each experiment retrieves new can-
didate shots one by one until a new correctly labeled shot is
found. Instantaneous precision is then defined as the num-
ber of correctly labeled shots (which increases by exactly
one at each step) divided by the total retrievals in all exper-
iments so far (which includes all the errors of this and all
prior experiments). Early errors of retrieval therefore con-
tinue to penalize subsequent experiments severely.

Some features, such as the three most common ones, can
be detected in isolated key frames with much greater than
90% AP. However, AP quickly drops as features become
less common, in part because less training data is avail-
able. For example, the AP for Building is typically less than
50%, and most of the rarer concepts, such Police-Security
or Prisoner, typically have an AP in the low single digits
of percent. This work presents a low-cost post-processing
method for increasing AP by exploiting feature-dependent
shot rhythms. On average, it increases absolute AP by 4%,
although particular features that follow more pronounced
rhythms see increases of relative AP as much as 67%.

2. SHOT TEMPORAL RELATIONSHIPS

We examined the 62K annotated shots and noted that prob-
abilities of occurrence of a feature were neither temporally
independent nor (first-order) Markovian. This was true even
though this analysis was a bit sloppy, in that all shots were
concatenated together into a single sequence without regard
to episode boundaries; this introduced (a relatively small
number of) spurious transitions. We found that features that
indicate the presence of a particular physical setting (for
example, Sports or Entertainment) tend toward repetitions;
their probability of reoccurrence in a second shot follow-
ing a first one with this feature approaches .9. In contrast,
features that indicate the presence of an object reoccur only
with a probability of about .3. Over all features, the prob-
ability of immediate second recurrence is from 2 to 700

times more likely that the probability of first occurrence.
Additionally, for features that tend to appear in dialogue se-
quences (for example, Person), the reoccurrence probabili-
ties are greater still at the third shot, and are there as much
as 250 times higher than first occurrence probabilities.

We examined all conditional probabilities reflecting de-
pendencies on sequences of up to six shots, but found through
a principal component decomposition of these transition ma-
trices that only repetition (first-order Markov) and alterna-
tion (second order Markov) were significantly represented.
We also noted that alternation was more clearly evident when
a history of three prior states were kept (third order Markov),
as this more clearly distinguished between alternation and
sporadic insertion/deletions. That is, sequences of charac-
teristic feature presence of 1010 and 0101 are clearly alter-
nating, but the sequences of 010 and 101 may simply indi-
cate a noisy 1 or 0, respectively. A third order Markov chain
for feature presence has 8 states and 16 transitions, but be-
cause of various conservation rules, one can show that it
has only 7 free parameters, which simplifies data-gathering.
Additional investigation also found that alternating features
did not prefer to alternate with any particular class of fea-
ture; those statistics were independent.

Using the first two eigenvectors of their transition prob-
ability vectors, we show in Fig. 1 the 39 features as they are
located in this two dimensional space of repetition versus
alternation. It is apparent that this space is a continuum and
that most features are mixed.
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Features plotted on repetition vs. alternation axes

Fig. 1. A display of the likelihood of feature repetition
(horizontal) vs. feature alternation (vertical), showing these
properties of the 39 LSCOM-lite features. Features describ-
ing backgrounds (37=Weather, 27=Court) tend toward rep-
etition; features describing human interactions (15=Person,
14=Face, 39=Meeting) tend toward alternation.
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3. FROM SVM SCORES TO PROBABILITIES

The training set of 62K shots easily provides, for each fea-
ture, the transition probabilities for its recognizing FSM.
However, before we could run the usual Viterbi algorithm
on the shot sequences to refine existing feature scores, we
needed to convert raw feature values into raw feature prob-
abilities. We explored two existing popular methods for do-
ing so.

Our feature detectors are Support Vector Machines, which
by definition return for each shot a score, s, which measures
the (hyperspace) distance of the input shot vector from the
hyperplane decision margins. SVMs are calibrated so that a
value of s = +1 occurs at the positive margin, and s = −1
occurs at the negative margin. Monotonically increasing
scores indicate monotonically increasing certainties of clas-
sification.

The method of Platt is based on an empirical observation
that suggests fitting these scores to a two-parameter family
of curves, 1/(1 + exp(As + B)) that intuitively capture a
common probability measure (“log odds”) [4]. However,
as our data shows in Fig. 2, and as the paper of Zadrozny
[5] more powerfully demonstrates, this family of curves of-
ten poorly captures the underlying probabilities, even when
SVM scores are normalized to fall within a pre-specified
range.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative occurrence of ground truth, normalized by max SVM score, all 39 features

Fig. 2. For each feature, SVM score normalized by max-
imum score (horizontal), versus cumulative occurrences of
ground truth normalized by total occurrence (vertical). No
simple probability model fits, especially for rarer features.

Unfortunately, the alternative method of isotonic regres-
sion suggested in [5] doesn’t appear to help either, particu-
larly for rarer features. With limited training data, SVM
responses for these features are errorful, with many posi-

tive scores corresponding to negative ground truth. There-
fore, the attempt to estimate feature probability by effec-
tively finding local ground truth density (subject to a side
condition of monotonic growth) often ends up severely un-
derestimating true probabilities, particularly near the posi-
tive margin, as Fig. 3 shows. These diminished probabilities
make FSM refinement overly cautious: few features are de-
tected and reinforced, and AP is improved on average by
only 1%, with no feature improving more than 5%.
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Fig. 3. Isotonic regression (lower curve) severely under-
estimates feature probability for sparse features, especially
near positive margin. But normalized cumulative occur-
rence compensates for SVM errors at all positive scores.

What we have found instead, to empirically compensate
for the poor SVM performance on sparse features, is the
use of a normalized cumulative occurrence measure of the
ground truth set G; see again Fig. 3. We define the value of
this measure at s as the fraction of total ground truth posi-
tives p that have a SVM score less than or equal to s. That
is,

cdf(s) = |p : p ⊂ G ∧ score(p) <= s|/|p ⊂ G|

For more popular features, this measure tracks the iso-
tonic regression curve well; for sparser ones it accumulates
more history than isotonic regression allows and therefore
better interpolates over gaps in the positive SVM response.
And, since in the neighborhoodof the separating hyperplane
the SVM response curve appears to reflect an exponential
probability density function [4], the normalized cumulative
measure, its integral, will be exponential as well.
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4. PERMUTING THE SCORE RANKINGS

Once we have an FSM and feature probabilities, it is straight-
forward to run the Viterbi algorithm to refine which shots
had a given feature. We trained on 62K shots of data and
tested on 6.5K shots. We found that performance improved
somewhat by using a separate normalized cumulative mea-
sure for feature absence, also; these two cumulative mea-
sures do not quite add to 1 at every score s.

To measure the effectiveness of this procedure, we used
AP again, feeding it shots in a permuted order. We first fed
the AP algorithm only those shots that had been detected
by Viterbi, and in order of their declining raw SVM scores.
After these shots were exhausted and, if it was still nec-
essary (we used the customary cut-off of 1000 shots), the
remaining shots were fed to the AP algorithm, again in de-
clining score order. The AP computation of a feature having
a strong rhythm is shown in Fig. 4.
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Fig. 4. A graph of the improvement in the Average Precision
of the highly alternating feature Corporate-Leader (upper
curve): horizontal axis is experiment number, vertical axis
is instantaneous precision at that experiment.

Overall, the average absolute improvement in the highly
conservative AP measure was 4%, above average baseline
absolute AP measures of about 30%. (That is, performance
increased from about 30% to about 34%.) In general, the
more pronounced was a feature’s shot rhythm—the closer it
fell to either the upper margin or right margin of Figure 1—
the more significant was the improvement in AP. We also
noted that a first order Markov model was not as successful;
it showed a mean increase in AP of only 2.6%.

The one and only striking failure in performance, show-
ing a loss in absolute AP of 17%, was the Computer/TV-
Screen feature, a rare feature which nevertheless showed
high repetition in the training set, with probability of re-

currence of .85. The test set, which may be from a different
annotator, displayed radically different transition statistics;
its probability of recurrence was only .37.

5. CONCLUSIONS AND FUTURE WORK

We presented a three-step post-processing method for im-
proving the precision of feature detection in shots, based on
derived shot rhythms. Since the method only visits the de-
rived feature scores and not the images themselves, its cost
is very low, and linear in the number of shots. It necessarily
uses a third order Markov model. It shows good results even
though the training was somewhat sloppy and the ground
truth annotations appear to have a number of serious errors.

In future work, we anticipate: improving the training by
accommodating episode boundaries; improving the testing
by using cross-validation; exploring a rigorous theoretic jus-
tification for the cumulative occurrence measure; determin-
ing whether the statistics of a given feature can accurately
choose its refining FSM’s Markovian order—including ze-
roth order; and applying this shot label refinement method
to concrete indexing and retrieval applications.
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