
VIDEO ANALYSIS AND COMPRESSION ON THE

STI CELL BROADBAND ENGINE PROCESSOR

Lurng-Kuo Liu, Sreeni Kesavarapu, Jonathan Connell, Ashish Jagmohan,

Lark-hoon Leem, Brent Paulovicks, Vadim Sheinin, Lijung Tang, Hangu Yeo

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

ABSTRACT

With increased concern for physical security, video

surveillance is becoming an important business area. Similar

camera-based system can also be used in such diverse applications

as retail-store shopper motion analysis and casino behavioral

policy monitoring. There are two aspects of video surveillance that

require significant computing power: image analysis for detecting

objects, and video compression for digital storage. The new STI

CELL Broadband Engine (CBE) processor is an appealing

platform for such applications because it incorporates 8 separate

high-speed processing cores with an aggregate performance of

256Gflops. Moreover, this chip is the heart of the new Sony

Playstation 3 and can be expected to be relatively inexpensive due

to the high volume of production. In this paper we show how

object detection and compression can be implemented on the CBE,

discuss the difficulties encountered in porting the code, and

provide performance results demonstrating significant speed-up.

1. INTRODUCTION

Video surveillance is a growing business area due to several

factors. First, with heightened concerns about terrorism many

facilities such as fuel storage depots and commercial airports have

been looking for ways to provide better physical security. Second,

the associated hardware costs for cameras, interconnectivity, and

storage have been steadily dropping, making the installation of

video surveillance systems more affordable. There are two aspects

of a typical video surveillance system that require significant

computing power: image analysis for detecting objects, and video

compression for digital storage. At the front end the system detects

moving objects in the scene through a process known as

“background subtraction” (BGS) and tracks these objects over

time. Various details of the objects themselves as well as their

trajectories are available for triggering immediate alerts or for use

as database keys to later retrieve particular segments of stored

video.

Large scale digital video surveillance systems require the use

of efficient video compression algorithms prior to storage. The

state-of-the-art H.264 video compression standard [1] provides

gains of up to 50% in compression efficiency over previous

standards such as MPEG2/MPEG4 [2], which are the algorithms of

choice in current video surveillance systems. The H.264 standard

derives most of its compression gain from the use of efficient

context-adaptive binary arithmetic coding, the use of quarter-pixel

accurate motion vectors for motion compensation, and the use of

several different macroblock prediction modes and block sizes for

encoding macroblocks (i.e. 16 × 16 blocks of luma pixels). The

high complexity of the H.264 encoding algorithm and the need for

scalability in surveillance systems make the CBE well-suited for

use in video encoding.

The rest of the paper describes the details of the algorithms,

the system design that leverages the features of the CBE

architecture, and some preliminary results on their performance.

2. OVERALL SYSTEM ARCHITECTURE AND CELL

BROADBAND ENGINE PLATEFORM

The overall system architecture for our studies is shown in Fig. 1.

It is based on IBM’s intelligent video surveillance system called

S3-MILS [3]. It consists of a front-end subsystem and a back-end

subsystem. The front-end subsystem handles video analysis and

compression which require significant computing power. The

back-end subsystem handles content management and retrieval.

Motivated by the need of an efficient and cost-effective way to

implement the system and along with the alluring cost-

performance ratio of CBE, we have proposed a CBE-based video

analysis and compression mechanism aiming to serve as the front-

end subsystem of the overall video surveillance system. This

involved some innovative software architecture design and

algorithm development in order to leverage the features of the

CBE.

The CELL Broadband Engine [4] was developed in a joint

program between Sony, Toshiba, and IBM. The CBE consists of 8

synergistic processing elements (SPEs) coordinated by a PowerPC-

based general processing element (PPE). The main computing

engines on CBE for high performance computing are the SPEs.

Fig. 1 IBM’s S3-MILS video surveillance architecture

291424403677/06/$20.00 ©2006 IEEE ICME 2006

The SPE [5] delivers performance by executing up to two

instructions per cycle. Each of these instructions operates in a

single instruction, multiple-data (SIMD) fashion on four 32-bit

words in parallel. Instruction throughput is maximized with

instructions that eliminate or help predict branches and 128

registers. The SPE offers a high bandwidth interface to a direct

memory access (DMA) engine that can transfer 32 GB/sec to and

from the 256 KB local memory. Each SPE has its own memory

flow controller (MFC), and can initiate up to 16 independent DMA

transfers to and from its local store. To achieve maximum

throughput, a program can use the DMA engine to schedule data

movement in parallel with computation.

The SPE local storage is a limited resource. Only 256 Kbytes

is available for program, stack, local data structures and DMA

buffers. Many of the optimization techniques require additional

pressure on this limited resource. As such, all optimization may

not be possible for a given application. Therefore, programmers

need to evaluate the feasibility of their choose optimization

approach based on the limited local store constraint.

In general, the process of CBE programming consists of three

major phases. First, uniprocessor code needs to be partitioned into

code to be run on the PPE and SPEs. Second, the SPE code should

be vectorized to exploit the strength of the vector engines in the

SPEs. Finally tasks should be scheduled optimally to bring the best

speedup with the least idle time in the SPEs. Programming models

for Cell architecture differ as to how code is partitioned and how

SPEs are used. With still limited support from compiler and other

tools, programmers may require some creative thinking in their

application development.

3. ALGORITHM AND ARCHITECTURE OF BGS ON

CELL BROADBAND ENGINE

The background subtraction system finds objects by looking for

moving regions against a stationary background. It does this by

comparing the current video frame to a stored reference frame

representing the “empty” scene. The result of the computation is a

binary mask indicating where the moving objects are, as shown in

Fig. 2. While conceptually simple, for a robust implementation

there are many sophisticated details to consider. First, it is

desirable to normalize the input video frames as much as possible.

This keeps the system from detecting spurious objects resulting

from differences induced by things like camera color variations,

swaying of the camera in the wind, or noise introduced by video

compression.

Also, straight pixel subtraction is not a very good motion

detection scheme. Provisions must be made for finding and

eliminating shadow and highlight regions without ignoring subtly

shaded regions. For this reason, the BGS subsystem combines

evidence from color, intensity, texture, and motion variations to

generate an overall saliency map. This map is then thresholded to

give a raw version of the foreground. A number of morphological

operators and connected component analyses are then performed

on the raw mask to generate a cleaner segmentation.

A further complication arises in building and maintaining the

reference background image. In the case where there are always

moving objects in the field of view, this reference image needs to

be created incrementally in the relatively stable regions. The

reference image also needs to be slowly updated in the case of

weather changes or for sun angle progression. Finally, moving

objects sometimes stop and persist for a long time at the same

place (e.g. a car parks in a lot or a door closes). In this case, to

allow proper detection of new moving object in front of these

former foreground objects, a mechanism must be provided to

absorb such objects into the background model.

3.1. Implementation on Cell Broadband Engine

The BGS system is divided into four separate stages as shown in

Fig 3. They are Image Pre-processing, Salience Detection, Mask

Generation, and Model Maintenance. The goal of the partitioning

was for each module to contain functions with logic coherency;

and for them to have similar running times. A straight forward

mapping of multiple BGS onto a Cell processor might statically

assign ’n’ SPEs to ’m’ BGS, constrained by the 8 available SPEs.

However, statically assigning SPEs will prevent the system from

dynamically adapting to workload changes.

In order to make the most efficient use of the CBE’s

resources and be able to handle multiple video streams with

any give number of available SPEs, each SPE is assigned to

complete a module and then ready to be reassigned. The

application in PPE will inquire for an available SPE resource first.

The PPE then update its command control block and pass the

command to the SPE. The SPE updates its code module as needed

Figure 2 Output of the Background Subtraction (BGS)

system.

Fig. 3 Background Subtraction (BGS) processing stages.

Image

Preprocess

Model

Maintenance

Mask

Generation

Salience

Detection

Figure 4 Cache miss v.s. SPE soft cache size.

30

and then starts the process of the module. The data requires by the

module will then be DMAed between main memory and its local

store.

As in most of the image processing library, the video analysis

functions in BGS need at least one or two video frames as input

and generate another one as output, which is impossible to keep in

SPE’s local store all at once. We thus use a DMA load operation to

bring in a small block of data to SPE local store at a time, let the

SPE process the data in local store, write the processed data back

to PU memory with a DMA store operation (if necessary). The

overhead of the DMA operations can generally be hid by using

double-buffering scheme. There are still functions need to process

a large scale data but in a random manner, where the next element

to be accessed is unpredictable or depends on the processing result

of the current element. The same double-buffering DMA scheme is

then not applicable to this case. To handle this problem, we use a

buffer in local store as a soft cache for the data in PU system

memory. We then do a DMA request only if there is a local cache

miss. Fig 4 shows the performance at different soft cache size. In

our case, we empirically determined to choose the cache size at

1KB, which entails a cache miss rate of around 3%. That is, we

can eliminate 97% of the DMA requests as compared to doing

DMA without this soft cache.

4. LOW-COMPLEXITY H.264 MODE-SELECTION

The present H.264 encoder implementation is aimed at providing

efficient compression for bit-rates from 1-3 Mbps (SD video at 30

fps) and variable frame rate and resolution, which is well-suited

for typical surveillance applications. Accordingly, the encoder

employs a strict subset of the prediction modes provided by the

H.264 standard. In particular, the encoder is restricted to the use of

16×16 macroblocks for non intra-coded frames—this significantly

lowers computational complexity while having only a small effect

on compression performance for the requirements at hand. Further,

the encoder contains all main-profile tools with the exception of

interlaced coding and weighted prediction.

In our implementation for prediction mode selection, we

make use of a learning-theoretic approach [6] to select from among

the main prediction classes, and to further select the best prediction

mode within the selected class. Both the inter-intra and Intra4-

Intra16 decisions are made using supervised binary classification

using classifier trees [7]. As detailed in [6], classification is

performed as follows: Prior to classification the 16 × 16 current

macroblock m is down-sampled to a 4×4 array, denoted m4.

Denoting the 4×4 Hadamard transform of m4 as THm4, the

following four features, as shown in Equation (1) are used for I4-

I16 discrimination: (1) The macroblock high frequency content

(2) The macroblock horizontal frequency content, (3) The

macroblock vertical frequency content. In addition, for intra-inter

classification, the following features were used: (4) The absolute

sum of the transform coefficients of the prediction error between

the down-sampled current macroblock m4, and the down-sampled

motion compensated predictor p4.

4

1

4

1 444

4

2 43

4

2 42

4

2

4

2 41

|),)((|,|)0,(|

|),0(|,|),(|

i j Hi H

j Hi j H

jipmTfimTf

jmTfjimTf
.

The learning-theoretic algorithm is trained offline using a set

of standard training sequences, and only a small amount of

computation is required, to compute the learned discrimination

functions, during encoding. Thus the time complexity of mode

selection, which is a significant constituent of the overall time

complexity of the reference H.264 encoder, is significantly

reduced.

4.1. H.264 Encoding on Cell Broadband Engine

The H.264 encoding process was divided into three basic modules:

motion estimation (ME), transform and quantization (PI), and

CABAC (AC). Again, the approach we used was to assign an SPE

to an encoder to complete a module and then to be reassigned.

Each of these functions operates on an entire frame at a time and

constitutes the unit of work for an SPE. The SPE is passed a

command block which contains the operation to be performed and

pointers to the frame buffers on which it is to perform the function.

As the SPE completes the function on a frame, it notifies the PPE

which reassigns it to the next pending work unit. In this way, any

mix of frame rates, frame sizes, and IPB stream structures can be

managed automatically by the CBE.

Motion estimation (ME) was, perhaps, the most difficult to

port to an SPE due to the large amount of buffering this function

requires. In our implementation, the range for motion estimation

was limited to a window of up to eight macroblocks in the vertical

direction but can search the full width of the frame in the

horizontal direction. That is, a window of at most eight rows of

macroblocks from the reference frame is DMAed and maintained

inside the SPE and one row of macroblocks from the current frame

is processed against it. As the ME function proceeds thru the

frame, one row of macroblocks is fetched from both the reference

and the current frames. Though several search heuristics are used

to limit the number of SAD computations, search results are to

quarter-pixel resolution. Besides motion estimation, this function

also computes the heuristic used to select between intra and inter

coding for a macroblock. This, along with the motion vectors and

motion compensated prediction is returned to system memory after

each row is processed.

As with the ME function, the second function, transform and

quantization (PI), processes a frame by row of macroblocks. Each

row of macroblocks from the current frame is read into the SPE

along with the motion-compensated prediction for that row and the

intra/inter decision made by the ME function. Though the

intra/inter decision was made by ME, intra prediction needs further

refinement to select either 16 × 16 or 4 × 4 mode which is, again,

decided by a heuristic. After this, an exhaustive search is made of

either the four 16 × 16 possible predictions or the nine 4 × 4

predictions. From these predictions are generated the macroblock

coefficients (transform and quantization) and the reconstructed

frame (inverse quantization, inverse transform and loop-filter).

Once PI has completed the reconstructed frame is available to be

used as a reference for the next frame.

The last function is the CABAC encoding (AC) of the motion

vectors and coefficients. Despite the serial nature of the CABAC

code, single SPE is able to perform this function in approximately

the same amount of time as the PPE.

5. SUMMARY OF PERFORMANCE RESULTS

We use the standard mobile_and_calendar test sequence for the

compression performance analysis on our presented low-

complexity H.264 encoder. Fig. 5 compares the convex hull of the

PSNR-Rate performance curve for the three codecs for the given

(1)

31

test sequence. As can be seen, the IBM H.264 codec is about 1 dB

inferior to the reference H.264 codec, and is about 1 dB superior to

the reference MPEG4 codec. This loss in compression efficiency

vs. the reference H.264 encoder is accompanied by a large gain in

computational efficiency—a software implementation of the

presented encoder, running on a Windows based Pentium

workstation, is about 40 times faster than a corresponding software

implementation of the public H.264 reference coder, and is about

10 times faster than the MPEG4 reference coder.

Table 1 Processing times for one SPE on 2.4 GHZ Cell

Broadband Engine for Cell encoding functions.

 ME (ms) PI (ms) AC (ms)

table tennis (1 Mbps) 11.9 14.9 13.6

table tennis (2 Mbps) 11.4 15.6 17.4

table tennis (3 Mbps) 11.1 17.8 21.5

mobile (1 Mbps) 13.6 15.6 13.0

mobile (2 Mbps) 13.0 16.7 17.9

mobile (3 Mbps) 12.9 16.7 20.9

Table 1 shows the performance of the presented H.264

encoder running on CBE., Virtually all of the encoding is

performed by the SPEs with only a small amount of NAL unit

processing being done by the PPE. The average time each function

(ME,PI,AC) takes for three different video test sequences, each

encoded at three different bitrates. These times were measured on

a single SPE of a 2.4 GHz CBE. This shows that two SPEs can do

SD video encoding at 30 fps. Thus a CBE can encode four SD

video sequences at 30 fps. As a rough point of reference, the (non-

optimized) software implementation of our same H.264 encoder on

a 3.0 GHz Pentium IV processor can be used to encode at most one

SD sequence at about 5-6 fps. This is about 20x performance gain

from a single CBE.

Table 2 Execution time of BGS partitioned modules

Stage Prep Salience Model Mask

time (ms) 4.49 1.34 4.86 4.55

Table 2 shows the average execution time of each stage in

BGS, which is equivalent to about 65 fps. However, without tools

support for overlay at this early stage, dynamic SPE allocation

using continuous thread creation/killing introduces additional

overheads. In this case, one SPE can handle BGS at 42fps. We

expect the performance to be further improved when an overlay

support is available. As a rough point of reference, the BGS

subsystem runs at about 58 fps on a 2.4GHz Xeon with 2GB

memory using MMX/SSE/SSE2 parallelization. This shows that

the BGS subsystem running on a 2.4GHz CBE with 512MB RAM

achieve a 6-9x overall performance speed-up. It is worth to note

from our observation that, comparing the scalar version codes

running on SPE, the SIMD features of SPE do provide significant

performance improvement. Around 50% functions we tested have

between 4x~16x improvement, 25% functions gain a 16x~40x

improvement, and the other 25% of the functions are in the

1.5x~4x improvement category.

6. DISCUSSIONS

We present an implementation of an H.264 video encoding

algorithm and video analysis for background subtraction on the

CBE, wherein each CBE can encode and analyze two channels of

video at 30 fps, and a full capacity blade center containing seven

blades each carrying two CBEs can handle 28 streams of video.

Thus, the proposed architecture can be used to serve as the core of

a large-scale surveillance system which would be scalable, and

have far smaller cost of ownership than traditional solutions.

Yet the applications porting were not trivial due to limited

tools support at this early stage of product development. The

difficulties faced were primarily memory issues. First, the SPU did

not have as much program memory as we would have liked and

there are limited tools support for different programming models,

thus requiring manual code partitioning or user management of

overlays. Second, many of the optimization techniques require

additional pressure on this limited resource. As such, all

optimization may not be possible for a given application. For

example, algorithms based on tables lookup might need to be

modified to use computation instead. Therefore, applications

developers require some creative thinking in order to develop an

appropriate optimization scheme. In the long term there may be

more tools support and even architectural updates that can help

ameliorate these difficulties.

7. REFERENCES

[1] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra,

“Overview of the h.264/avc video coding standard,” IEEE

Transactions on Circuits and Systems for Video Technology, vol.

13, no. 7, pp. 560–576, July 2003.

[2] ISO/IEC JTC 1/SC 29/WG 11, “Mpeg-4 video coding

standard,” 2000.

[3] A. Hampapur et al, “Smart Video Surveillance,” IEEE

Transactions on Signal Processing, Vol. 22, No. 2, March 2005.

[4] “Broadband Engine,” Book IV for DD1.0, Version 1.0,

SCEI/Toshiba/IBM, May 25, 2004.

[5] “Synergistic Processing Unit Core,” Book IV for DD1.0,

SCEI/Toshiba/IBM, May 10, 2004.

[6] A. Jagmohan and K. Ratakonda, “Time-efficient learning

theoretic algorithms for h.264 mode selection,” in Proc. IEEE Int.

Conf. Image Processing, 2004, pp. 749–752.

[7] P. Chou, “Optimal partitioning for classification and regression

trees,” IEEE Trans. Pat. Anal. Mach. Intel., vol. 13, no. 4, pp. 340–

354, 1991.

0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4
26

27

28

29

30

31

32

33

34

Rate (bits per pixel)

P
S

N
R

 (
dB

)

PSNR−Rate plot for Mobile SD

JM8.2 Reference H.264
IBM H.264
Reference MPEG4

Figure 5 PSNR-Rate plots for standard definition

mobile_and_calendar sequence.

32

