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ABSTRACT

With increased concern for physical security, video 

surveillance is becoming an important business area. Similar 

camera-based system can also be used in such diverse applications 

as retail-store shopper motion analysis and casino behavioral 

policy monitoring. There are two aspects of video surveillance that 

require significant computing power: image analysis for detecting 

objects, and video compression for digital storage. The new STI 

CELL Broadband Engine (CBE) processor is an appealing 

platform for such applications because it incorporates 8 separate 

high-speed processing cores with an aggregate performance of 

256Gflops. Moreover, this chip is the heart of the new Sony 

Playstation 3 and can be expected to be relatively inexpensive due 

to the high volume of production. In this paper we show how 

object detection and compression can be implemented on the CBE, 

discuss the difficulties encountered in porting the code, and 

provide performance results demonstrating significant speed-up. 

1. INTRODUCTION 

Video surveillance is a growing business area due to several 

factors. First, with heightened concerns about terrorism many 

facilities such as fuel storage depots and commercial airports have 

been looking for ways to provide better physical security. Second, 

the associated hardware costs for cameras, interconnectivity, and 

storage have been steadily dropping, making the installation of 

video surveillance systems more affordable. There are two aspects 

of a typical video surveillance system that require significant 

computing power: image analysis for detecting objects, and video 

compression for digital storage. At the front end the system detects 

moving objects in the scene through a process known as 

“background subtraction” (BGS) and tracks these objects over 

time. Various details of the objects themselves as well as their 

trajectories are available for triggering immediate alerts or for use 

as database keys to later retrieve particular segments of stored 

video.

Large scale digital video surveillance systems require the use 

of efficient video compression algorithms prior to storage. The 

state-of-the-art H.264 video compression standard [1] provides 

gains of up to 50% in compression efficiency over previous 

standards such as MPEG2/MPEG4 [2], which are the algorithms of 

choice in current video surveillance systems. The H.264 standard 

derives most of its compression gain from the use of efficient 

context-adaptive binary arithmetic coding, the use of quarter-pixel 

accurate motion vectors for motion compensation, and the use of 

several different macroblock prediction modes and block sizes for 

encoding macroblocks (i.e. 16 × 16 blocks of luma pixels). The 

high complexity of the H.264 encoding algorithm and the need for 

scalability in surveillance systems make the CBE well-suited for 

use in video encoding. 

The rest of the paper describes the details of the algorithms, 

the system design that leverages the features of the CBE 

architecture, and some preliminary results on their performance. 

2. OVERALL SYSTEM ARCHITECTURE AND CELL 

BROADBAND ENGINE PLATEFORM 

The overall system architecture for our studies is shown in Fig. 1. 

It is based on IBM’s intelligent video surveillance system called 

S3-MILS [3]. It consists of a front-end subsystem and a back-end 

subsystem. The front-end subsystem handles video analysis and 

compression which require significant computing power. The 

back-end subsystem handles content management and retrieval. 

Motivated by the need of an efficient and cost-effective way to 

implement the system and along with the alluring cost-

performance ratio of CBE, we have proposed a CBE-based video 

analysis and compression mechanism aiming to serve as the front-

end subsystem of the overall video surveillance system. This 

involved some innovative software architecture design and 

algorithm development in order to leverage the features of the 

CBE.

The CELL Broadband Engine [4] was developed in a joint 

program between Sony, Toshiba, and IBM. The CBE consists of 8 

synergistic processing elements (SPEs) coordinated by a PowerPC-

based general processing element (PPE). The main computing 

engines on CBE for high performance computing are the SPEs. 

Fig. 1 IBM’s S3-MILS video surveillance architecture 
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The SPE [5] delivers performance by executing up to two 

instructions per cycle. Each of these instructions operates in a 

single instruction, multiple-data (SIMD) fashion on four 32-bit 

words in parallel. Instruction throughput is maximized with 

instructions that eliminate or help predict branches and 128 

registers. The SPE offers a high bandwidth interface to a direct 

memory access (DMA) engine that can transfer 32 GB/sec to and 

from the 256 KB local memory. Each SPE has its own memory 

flow controller (MFC), and can initiate up to 16 independent DMA 

transfers to and from its local store. To achieve maximum 

throughput, a program can use the DMA engine to schedule data 

movement in parallel with computation.

The SPE local storage is a limited resource. Only 256 Kbytes 

is available for program, stack, local data structures and DMA 

buffers. Many of the optimization techniques require additional 

pressure on this limited resource. As such, all optimization may 

not be possible for a given application. Therefore, programmers 

need to evaluate the feasibility of their choose optimization 

approach based on the limited local store constraint.

In general, the process of CBE programming consists of three 

major phases. First, uniprocessor code needs to be partitioned into 

code to be run on the PPE and SPEs. Second, the SPE code should 

be vectorized to exploit the strength of the vector engines in the 

SPEs. Finally tasks should be scheduled optimally to bring the best 

speedup with the least idle time in the SPEs. Programming models 

for Cell architecture differ as to how code is partitioned and how 

SPEs are used. With still limited support from compiler and other 

tools, programmers may require some creative thinking in their 

application development. 

3. ALGORITHM AND ARCHITECTURE OF BGS ON 

CELL BROADBAND ENGINE 

The background subtraction system finds objects by looking for 

moving regions against a stationary background. It does this by 

comparing the current video frame to a stored reference frame 

representing the “empty” scene. The result of the computation is a 

binary mask indicating where the moving objects are, as shown in  

Fig. 2. While conceptually simple, for a robust implementation 

there are many sophisticated details to consider. First, it is 

desirable to normalize the input video frames as much as possible. 

This keeps the system from detecting spurious objects resulting 

from differences induced by things like camera color variations, 

swaying of the camera in the wind, or noise introduced by video 

compression.

Also, straight pixel subtraction is not a very good motion 

detection scheme. Provisions must be made for finding and 

eliminating shadow and highlight regions without ignoring subtly 

shaded regions. For this reason, the BGS subsystem combines 

evidence from color, intensity, texture, and motion variations to 

generate an overall saliency map. This map is then thresholded to 

give a raw version of the foreground. A number of morphological 

operators and connected component analyses are then performed 

on the raw mask to generate a cleaner segmentation. 

A further complication arises in building and maintaining the 

reference background image. In the case where there are always 

moving objects in the field of view, this reference image needs to 

be created incrementally in the relatively stable regions. The 

reference image also needs to be slowly updated in the case of 

weather changes or for sun angle progression. Finally, moving 

objects sometimes stop and persist for a long time at the same 

place (e.g. a car parks in a lot or a door closes). In this case, to 

allow proper detection of new moving object in front of these 

former foreground objects, a mechanism must be provided to 

absorb such objects into the background model.

3.1. Implementation on Cell Broadband Engine 

The BGS system is divided into four separate stages as shown in 

Fig 3. They are Image Pre-processing, Salience Detection, Mask 

Generation, and Model Maintenance. The goal of the partitioning 

was for each module to contain functions with logic coherency; 

and for them to have similar running times.  A straight forward 

mapping of multiple BGS onto a Cell processor might statically 

assign ’n’ SPEs to ’m’ BGS, constrained by the 8 available SPEs. 

However, statically assigning SPEs will prevent the system from 

dynamically adapting to workload changes. 

In order to make the most efficient use of the CBE’s 

resources and be able to handle multiple video streams with 

any give number of available SPEs, each SPE is assigned to 

complete a module and then ready to be reassigned. The 

application in PPE will inquire for an available SPE resource first. 

The PPE then update its command control block and pass the 

command to the SPE. The SPE updates its code module as needed 

Figure 2 Output of the Background Subtraction (BGS) 

system. 

Fig. 3 Background Subtraction (BGS) processing stages. 

Image

Preprocess

Model 

Maintenance 

Mask 

Generation

Salience

Detection

Figure 4 Cache miss v.s. SPE soft cache size.

30



and then starts the process of the module. The data requires by the 

module will then be DMAed between main memory and its local 

store.

As in most of the image processing library, the video analysis 

functions in BGS need at least one or two video frames as input 

and generate another one as output, which is impossible to keep in 

SPE’s local store all at once. We thus use a DMA load operation to 

bring in a small block of data to SPE local store at a time, let the 

SPE process the data in local store, write the processed data back 

to PU memory with a DMA store operation (if necessary). The 

overhead of the DMA operations can generally be hid by using 

double-buffering scheme. There are still functions need to process 

a large scale data but in a random manner, where the next element 

to be accessed is unpredictable or depends on the processing result 

of the current element. The same double-buffering DMA scheme is 

then not applicable to this case. To handle this problem, we use a 

buffer in local store as a soft cache for the data in PU system 

memory. We then do a DMA request only if there is a local cache 

miss. Fig 4 shows the performance at different soft cache size. In 

our case, we empirically determined to choose the cache size at 

1KB, which entails a cache miss rate of around 3%. That is, we 

can eliminate 97% of the DMA requests as compared to doing 

DMA without this soft cache. 

4. LOW-COMPLEXITY H.264 MODE-SELECTION 

The present H.264 encoder implementation is aimed at providing 

efficient compression for bit-rates from 1-3 Mbps (SD video at 30 

fps) and variable frame rate and resolution, which is well-suited 

for typical surveillance applications. Accordingly, the encoder 

employs a strict subset of the prediction modes provided by the 

H.264 standard. In particular, the encoder is restricted to the use of 

16×16 macroblocks for non intra-coded frames—this significantly 

lowers computational complexity while having only a small effect 

on compression performance for the requirements at hand. Further, 

the encoder contains all main-profile tools with the exception of 

interlaced coding and weighted prediction.

In our implementation for prediction mode selection, we 

make use of a learning-theoretic approach [6] to select from among 

the main prediction classes, and to further select the best prediction 

mode within the selected class. Both the inter-intra and Intra4-

Intra16 decisions are made using supervised binary classification 

using classifier trees [7]. As detailed in [6], classification is 

performed as follows: Prior to classification the 16 × 16 current 

macroblock m is down-sampled to a 4×4 array, denoted m4. 

Denoting the 4×4 Hadamard transform of m4 as THm4, the 

following four features, as shown in Equation (1) are used for I4-

I16 discrimination: (1) The macroblock high frequency content  

(2) The macroblock horizontal frequency content, (3) The 

macroblock vertical frequency content. In addition, for intra-inter 

classification, the following features were used: (4) The absolute 

sum of the transform coefficients of the prediction error between 

the down-sampled current macroblock m4, and the down-sampled 

motion compensated predictor p4.
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The learning-theoretic algorithm is trained offline using a set 

of standard training sequences, and only a small amount of 

computation is required, to compute the learned discrimination 

functions, during encoding. Thus the time complexity of mode 

selection, which is a significant constituent of the overall time 

complexity of the reference H.264 encoder, is significantly 

reduced.

4.1. H.264 Encoding on Cell Broadband Engine 

The H.264 encoding process was divided into three basic modules: 

motion estimation (ME), transform and quantization (PI), and 

CABAC (AC). Again, the approach we used was to assign an SPE 

to an encoder to complete a module and then to be reassigned. 

Each of these functions operates on an entire frame at a time and 

constitutes the unit of work for an SPE. The SPE is passed a 

command block which contains the operation to be performed and 

pointers to the frame buffers on which it is to perform the function. 

As the SPE completes the function on a frame, it notifies the PPE 

which reassigns it to the next pending work unit. In this way, any 

mix of frame rates, frame sizes, and IPB stream structures can be 

managed automatically by the CBE. 

Motion estimation (ME) was, perhaps, the most difficult to 

port to an SPE due to the large amount of buffering this function 

requires. In our implementation, the range for motion estimation 

was limited to a window of up to eight macroblocks in the vertical 

direction but can search the full width of the frame in the 

horizontal direction. That is, a window of at most eight rows of 

macroblocks from the reference frame is DMAed and maintained 

inside the SPE and one row of macroblocks from the current frame 

is processed against it. As the ME function proceeds thru the 

frame, one row of macroblocks is fetched from both the reference 

and the current frames. Though several search heuristics are used 

to limit the number of SAD computations, search results are to 

quarter-pixel resolution. Besides motion estimation, this function 

also computes the heuristic used to select between intra and inter 

coding for a macroblock. This, along with the motion vectors and 

motion compensated prediction is returned to system memory after 

each row is processed. 

As with the ME function, the second function, transform and 

quantization (PI), processes a frame by row of macroblocks. Each 

row of macroblocks from the current frame is read into the SPE 

along with the motion-compensated prediction for that row and the 

intra/inter decision made by the ME function. Though the 

intra/inter decision was made by ME, intra prediction needs further 

refinement to select either 16 × 16 or 4 × 4 mode which is, again, 

decided by a heuristic. After this, an exhaustive search is made of 

either the four 16 × 16 possible predictions or the nine 4 × 4 

predictions. From these predictions are generated the macroblock 

coefficients (transform and quantization) and the reconstructed 

frame (inverse quantization, inverse transform and loop-filter). 

Once PI has completed the reconstructed frame is available to be 

used as a reference for the next frame. 

The last function is the CABAC encoding (AC) of the motion 

vectors and coefficients. Despite the serial nature of the CABAC 

code, single SPE is able to perform this function in approximately 

the same amount of time as the PPE. 

5. SUMMARY OF PERFORMANCE RESULTS 

We use the standard mobile_and_calendar test sequence for the 

compression performance analysis on our presented low-

complexity H.264 encoder. Fig. 5 compares the convex hull of the 

PSNR-Rate performance curve for the three codecs for the given 

(1)
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test sequence. As can be seen, the IBM H.264 codec is about 1 dB 

inferior to the reference H.264 codec, and is about 1 dB superior to 

the reference MPEG4 codec. This loss in compression efficiency 

vs. the reference H.264 encoder is accompanied by a large gain in 

computational efficiency—a software implementation of the 

presented encoder, running on a Windows based Pentium 

workstation, is about 40 times faster than a corresponding software 

implementation of the public H.264 reference coder, and is about 

10 times faster than the MPEG4 reference coder. 

Table 1 Processing times for one SPE on 2.4 GHZ Cell 

Broadband Engine for Cell encoding functions. 

 ME (ms) PI (ms) AC (ms) 

table tennis (1 Mbps) 11.9 14.9 13.6 

table tennis (2 Mbps) 11.4 15.6 17.4 

table tennis (3 Mbps) 11.1 17.8 21.5 

mobile (1 Mbps) 13.6 15.6 13.0 

mobile (2 Mbps) 13.0 16.7 17.9 

mobile (3 Mbps) 12.9 16.7 20.9 

Table 1 shows the performance of the presented H.264 

encoder running on CBE., Virtually all of the encoding is 

performed by the SPEs with only a small amount of NAL unit 

processing being done by the PPE. The average time each function 

(ME,PI,AC) takes for three different video test sequences, each 

encoded at three different bitrates. These times were measured on 

a single SPE of a 2.4 GHz CBE. This shows that two SPEs can do 

SD video encoding at 30 fps. Thus a CBE can encode four SD 

video sequences at 30 fps. As a rough point of reference, the (non-

optimized) software implementation of our same H.264 encoder on 

a 3.0 GHz Pentium IV processor can be used to encode at most one 

SD sequence at about 5-6 fps.  This is about 20x performance gain 

from a single CBE. 

Table 2 Execution time of BGS partitioned modules 

Stage Prep Salience Model Mask 

time (ms) 4.49 1.34 4.86 4.55 

Table 2 shows the average execution time of each stage in 

BGS, which is equivalent to about 65 fps.  However, without tools 

support for overlay at this early stage, dynamic SPE allocation 

using continuous thread creation/killing introduces additional 

overheads. In this case, one SPE can handle BGS at 42fps. We 

expect the performance to be further improved when an overlay 

support is available. As a rough point of reference, the BGS 

subsystem runs at about 58 fps on a 2.4GHz Xeon with 2GB 

memory using MMX/SSE/SSE2 parallelization. This shows that 

the BGS subsystem running on a 2.4GHz CBE with 512MB RAM 

achieve a 6-9x overall performance speed-up. It is worth to note 

from our observation that, comparing the scalar version codes 

running on SPE, the SIMD features of SPE do provide significant 

performance improvement. Around 50% functions we tested have 

between 4x~16x improvement, 25% functions gain a 16x~40x 

improvement, and the other 25% of the functions are in the 

1.5x~4x improvement category. 

6. DISCUSSIONS 

We present an implementation of an H.264 video encoding 

algorithm and video analysis for background subtraction on the 

CBE, wherein each CBE can encode and analyze two channels of 

video at 30 fps, and a full capacity blade center containing seven 

blades each carrying two CBEs can handle 28 streams of video. 

Thus, the proposed architecture can be used to serve as the core of 

a large-scale surveillance system which would be scalable, and 

have far smaller cost of ownership than traditional solutions. 

Yet the applications porting were not trivial due to limited 

tools support at this early stage of product development. The 

difficulties faced were primarily memory issues. First, the SPU did 

not have as much program memory as we would have liked and 

there are limited tools support for different programming models, 

thus requiring manual code partitioning or user management of 

overlays. Second, many of the optimization techniques require 

additional pressure on this limited resource. As such, all 

optimization may not be possible for a given application. For 

example, algorithms based on tables lookup might need to be 

modified to use computation instead. Therefore, applications 

developers require some creative thinking in order to develop an 

appropriate optimization scheme. In the long term there may be 

more tools support and even architectural updates that can help 

ameliorate these difficulties. 
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