
ON PARALLELIZATION OF A VIDEO MINING SYSTEM

Wenlong Li, Eric Li, Nan Di, Carole Dulong, Tao Wang, Yimin Zhang

Microprocessor Technology Lab, Intel Corporation

{wenlong.li, eric.q.li, nan.di, carole.dulong, tao.wang, yimin.zhang}@intel.com

ABSTRACT

As digital video data becomes more pervasive, mining in-
formation from multimedia data becomes increasingly im-
portant. Although researches in multimedia mining area
have shown great potential in daily life, the huge computa-
tional requirement prohibits its wide use in practice. Since
our personal computer is shifting from uniprocessors to
multicore processors, exploiting thread level parallelism in
multimedia mining applications is critical to utilize the
hardware resources and accelerate the mining process.

This paper presents three different parallel approaches
(task level, data slicing and hybrid parallel) to parallelize
one widely used application in video mining system. The
hybrid scheme, with the exploration of data level and task
level parallelism, delivers much better performance than
other two schemes. We get 10x performance improvement
on a 16-way multiprocessor system. Besides, we perform
several efficient optimization techniques, such as subexpres-
sion optimization, SIMD, and data blocking, to improve the
performance by more than 60%. Therefore, our paralleliza-
tion and optimization of the application makes it 16x faster
than it used to be. Our study shows that with proper paral-
lelization and optimization, multimedia mining can be used
widely in our daily life soon.

1. INTRODUCTION

Broadcast soccer video is a popular program in commercial
television broadcasts. With the advance of storage capabili-

ties, computing power and digital home entertainment, the

browsing and search in this kind of videos become more and

more active[1, 2, 3, 4]. Through highlights detection, the

consumers can retrieve specific video events quickly from

the long videos and save time. However, the large input data

and the underlying complex algorithm require more exces-

sive computation than the commodity PC could afford. For
example, it may take several hours to perform a task on one-

hour MPEG-2 video raw file, which limits its wide use in

practice. Our experiment shows detecting view type and

playfield information from one hour of MPEG2 soccer

video content takes 2 hours on today’s platforms, but less

than 8 minutes to obtain them on 16 way SMP system with

proper optimization and parallelization.

In this paper, we propose three different schemes to

parallelize the view type and playfield position detection

application, an essential component in video mining system

for soccer game highlight detection, and evaluate their ef-

fectiveness on 16 way shared-memory multiprocessor sys-
tem. The hybrid scheme, with the combination of data level

and task level parallelism, outperforms the other two candi-

dates, delivering much better speedup than other two

schemes.

2. OVERVIEW OF SOCCER HIGHLIGHT

DETECTION SYSTEM

Soccer videos happened in restricted playfields with game

rules and a defined broadcast layout. Taking advantage of

the specific domain knowledge, soccer highlight detection is

promising to achieve good performance in semantic content

than other kinds of videos, e.g. personal home video and

movies etc.

2.1. Framework of highlight detection

video

low-level feature extraction

mid-level keyword detection

high level event detection

audio featurevisual feature

x1 x2 xN keyword stream

... multimodal features

...

prediction result

Figure 1. Overview system framework

We view a broadcast soccer video from the perspective of a

program editor. Based on a predefined semantic intention,

an editor combines certain multimedia layout and content

elements to express highlight events. Hence, highlight de-

tection can be viewed as a reverse process of authoring [5].

Fig.1 illustrates our system framework. To minimize the
semantic gap between low-level features and high-level

211424403677/06/$20.00 ©2006 IEEE ICME 2006

events, we adopt the mid-level keyword representation [6].

The framework consists of three levels, i.e. low-level feature

extraction, mid-level semantic keywords generation and

high-level event detection. In processing, the low-level
module first extracts audio/visual features from the video

stream. Then the midlevel module uses the above au-

dio/visual features to detect semantic keywords, e.g. view

type, playing field position, excited speech, etc. Finally, the

high-level module infers highlight events in the semantic

space of these keyword streams.

2.2. Mid-level keyword generation

The mid-level module generates relevant semantic keywords
from low-level audio/visual features. Details of keywords

generation are described as following.

-x1 View type: By accumulating HSV color histogram,

we get the dominant color to segment the playing field re-

gion. According to the area of playing field and the size of

player, we then classify each shot into global view, medium

view, close-up view and out of view [3, 4]. Fig.2 shows ex-

amples of these view types.
-x2 Play-position: We classify the play-position of

those global-view shots into 15 regions as shown in Fig. 3.

We first execute Hough transform to detect field boundary

lines and the penalty box lines. A decision tree based classi-

fier determines the play position according to lines’ slope

and position [2, 4].

Figure 2. From left to right, these are examples of global
view, middle view, close-up view, out of view, and replay

logo

Figure 3. Hough line detection on a segmented playing
field and fifteen regions of play field

-x3 Replay: It is an important cue for highlights, since

replay usually follows a highlight. At the beginning and
ending of each reply, there is generally a logo flying in high

speed. We detect these logos to identify replay by dynamic

programming [7].

-x4;5 Audio keywords: There are some significant

sounds that have strong relations to some soccer highlights

such as goal, foul, etc. Our system detects two types of au-

dio keywords: commentator’s excited speech, and referee’s

whistle. Gauss mixture model (GMM) and SVM classifiers
are used to detect the above two keywords respectively from

low-level audio features including Mel frequency Cepstral

coefficients (MFCC), linear prediction coefficient (LPC)

and pitch [1, 7].

2.3. Highlight detection

Highlights in soccer videos are the special events that audi-

ences are especially interested in, e.g. goals, shoots, and

free-kicks etc. A stack fusion framework detects these high-

lights according to the mid-level keywords in Section 2.2.

3. PARALLEL SCHEME

3.1. Application study

The application can be divided into three modules: video

decoding, middle level keyword detection, and postprocess-

ing. The video decoder first decodes continuous frames

from the input video stream, and then the middle level key-

word extraction module is followed to extract view type and

playfield position at fixed frame interval. This process pro-
ceeds until all the frames are processed. Finally, all the view

type and playfield results are fed into a postprocessing mod-

ule to generate the continuous mid-level keywords. The

execution time breakdown indicates that the former two

modules are most time-consuming, constituting around 17%

and 83% of total time for the application. On the other hand,

the postprocessing module is extremely fast, therefore, is not

considered in this parallelization work.

3.2. Task level parallel scheme

The working pattern of middle level visual keywords detec-

tion application resembles the producer-consumer model,

where the video decoder works very similar to the task pro-

ducer, generating a sequence of video frames, while middle

level keyword extraction, acts as a task consumer, operating
on the decode frames to detect view type and playfield posi-

tion. Obviously, the working pattern well matches the well-

known producer-consumer threading model.

This multithreading scheme works very similar to the

task queue model provided by Intel OpenMP extension [8],

which provides an efficient way to exploit task level paral-

lelism. Fig.4 depicts a basic OpenMP taskQ working model,

when all the threads encounter the taskq pragma, one is cho-
sen to initialize task queue, and then the code inside the

taskq block is executed single-threaded. When a task

pragma is encountered within a taskq block, the code inside

the task block is conceptually enqueued as a task and put in

the queue. All the other worker threads will wait to fetch a

task from the queue until task is available.

Besides the convenience of exploiting task level paral-

lelism with TaskQ, the associated dynamic scheduling capa-
bility also enables to achieve good load balance in the paral-

lel implementation. When the task queue is full, the pro-

ducer thread will turn into the worker thread, which helps to

22

overcome the load imbalance and maximize the processor

utilization dramatically.

Figure 4. Execution model of task parallel scheme

Though the parallel scheme is simple and straightfor-

ward, it has some scaling limitations. Apparently, the maxi-

mal theoretical speedup of this parallel scheme is deter-
mined by the ratio of keyword extraction and video decod-

ing module, indicating that the maximal speedup is at most

6x according to Amdahl’s law [9].

3.3. Data slicing parallel scheme

Since the task level parallel scheme can’t provide sufficient

parallelism, we turn to explore the natural data parallelism
to slice the raw data into several video chunks. Each thread

uses similar routine as the serial application, but operates on

different video chunk. In contrast to the task level parallel-

ism, this parallel scheme provides more concurrency than

the task level parallel scheme. However, it also has some

deficiencies. First, it can’t support enough number of

threads when we cannot find the explicit sequence synchro-

nization codes in the segmented video chunk. Second, with
more video decoder and sliced data, the parallel overhead

increases. Furthermore, it may also suffer from load imbal-

ance since the computations are tightly coupled with the

video content itself, e.g., the computation complexity of

Hough line detection heavily depends on the number of

lines contained in the frame. Finally, all simultaneous video

decoders may excessively use the shared resources, such as

saturating the system bus.

3.4. Hybrid parallel scheme

To take advantage of both task level and data slicing parallel

scheme, we propose a hybrid parallelization approach to

merge these two schemes together. At first, we decompose

the video stream into several chunks, and then we use the

same task level scheme on each particular chunk of data as
illustrated in Section 3.2. Since the computation for each

task differs with different input, we employ a centralized

taskq to solve the load imbalance issue, where all tasks from

all video decoders are put into one universal queue, while all

the worker threads fetch tasks from this queue. The hybrid

scheme works similarly to task level parallel scheme shown
in Fig.4 except that we use multiple video decoding threads

as the task producers.

4. PERFORMANCE CHARACTERIZATION AND

ANALYSIS

This section examines the overall performance of parallel

shot detection application. The measurements are conducted
on a 16-way Intel Xeon shared-memory multiprocessor sys-

tem. Each processor runs at 3.0GHz, and 8K L1 data cache,

512KB L2 unified cache, 4MB L3 unified cache. Every 4

processors share a 32MB L4 cache. As for the interconnect,

the system uses two 4x4 crossbars. The input data are cho-

sen from the TRECVID data suite [10] in MPEG-2 format.

For the software, we use Intel 8.1 OpenMP compiler

tool chain, OpenCV and IPP library [11] to take advantage
their highly optimized routines. Furthermore, we use Intel

VTune[12] performance analyzer and thread profiler to

guide the optimizations and qualify the parallel perform-

ance.

4.1. Performance optimization

Before studying the parallel performance, we first describe
several optimization techniques to improve the application’s

performance. The profiling results indicate that the most

time consuming module is Hough transformation. First, we

apply sub-expression optimization, although it causes some

extra memory requirement, it significantly reduces the re-

peated computations and achieves more than 30% perform-

ance improvement. Second, we employ SIMD instructions

to avoid the penalty of floating point to integer data type
conversion, and the performance is further improved by

24%. Finally, we apply data blocking, loop splitting, and

data structure reorganization techniques, to increase the data

locality, which contributes another 7% performance gain.

As a result, the aggregated performance improvement is

more than 60% comparing to the original application.

4.2. Scalability performance study

Fig.5 reports the achieved speedup for three different paral-

lel schemes with 30 minutes MPEG-2 video dataset on up to

16 processors. As expected, the hybrid scheme delivers the

highest scalability performance on 16 processors, whereas

the task parallel scheme scales poorly beyond 8 processors.

The data slicing scheme is much worse than the other two

schemes on small amount of processors due to load imbal-
ance issue, with the increase of processors, it performs a

little better than the task scheme by providing more parallel-

ism, but still worse than the hybrid scheme due to load im-

balance problem and excessive use of shared resources.

23

Since the hybrid scheme outperforms the other two in terms

of scalability performance, we will only study this scheme

in the following.

0

4

8

12

16

1 2 4 8 16

Proc Num

S
p
e
e
d
u
p

Task Scheme
Data Slicing Scheme
Hybrid Scheme

Figure 5. Speedup of three different parallel schemes with
MPEG2 data input

To deeply understand the scaling limiting factors, we

characterize the parallel performance from the high level

general parallel overheads, e.g., synchronizations penalties,

load imbalance, and sequential sections, to the detailed

memory hierarchy behavior, e.g., cache miss rates and FSB

(front side bus) bandwidth.

The profiling information suggests that the hybrid par-

allel scheme almost has no synchronization overhead and
load imbalance problem as well as parallel overhead, the

sequential area goes up steadily with the increase of proces-

sor number, but maintains at an extremely low percentage.

Besides the general scalability performance factors,

memory subsystem also plays an important role in identify-

ing the scaling performance bottlenecks. We profile the ap-

plication with VTune, and performance metrics are chosen

to be different level cache misses and system memory band-
width. We find that the bus utilization rate increases linearly

with the number of processors. In this application, for

MPEG2 data, each thread holds about 15MB private data,

and all threads share 7MB read-only data, which cannot fit

in L3 cache, or even L4 cache with more than 2 threads.

Therefore, when multiple threads running on processors

within one cluster, they will compete for the L4 cache and

excessively use the bus bandwidth, which accounts for the
hybrid scheme only achieves inferior speedup on 16 proces-

sors. In the future, when we have multiple CPU-cores on the

same die, interconnect bandwidth among these cores will be

much higher. At that time, we believe the scaling limiting

factor will be gone for this application.

5. CONCLUSION

In this paper, we presented a novel hybrid parallel scheme to

accelerate the middle level keyword detection of soccer

highlight detection system. With the exploration of thread

level parallelism, the execution time is reduced by more

than ten times to make the multimedia application run much

faster than before.

Our study shows that with proper parallelization and

optimization, multimedia mining can be used widely in our
daily life soon. Future algorithm developers should keep

future parallel programming in mind when they develop

new algorithms. When everyone “multi-threads” the algo-

rithm, we should be able to enjoy richer multimedia applica-

tion in our daily life.

6. ACKOWLEDGMENTS

We would like to thank Bo Yang, Fei Wang, Prof Lifeng

Sun, and Prof Shiqiang Yang of Dept. CS @ Tsinghua Univ

for sharing with us their middle-level module codes studied

in this work.

7. REFERENCES

 [1] L. Duan, M. Xu, T.-S. Chua, Q. Tian, and C. Xu. A mid-level
representation framework for semantic sports video analysis. In
ACM Multimedia Conference, 2003.
[2] J. Wang, C. Xu, E.Chng, K. Wan, and Q. Tian. Automatic re-
play generation for soccer video broadcasting. In ACM Multimedia
Conference, 2004.
[3] A. Ekin, A. M. Tekalp, and R. Mehrotr. automatic soccer video
analysis and summarization. IEEE Trans. on Image processing,
12(7):796–807, 2003.
[4] M. Luo, Y. Ma, and H.J. Zhang. Pyramidwise structuring for
soccer highlight extraction. In ICICS-PCM, page 1-5, 2003.

[5] C. G. Snoek and M. Worring. Multimedia event-based video
indexing using time intervals. IEEE Trans on Multimedia,
7(4):638–647, 2005.
[6] X. Yang, P. Xue, and Q.Tian. Repeated video clip identifica-
tion system. In ACM Multimedia 2005, pages 227–228, 2005.
[7] M. Xu, N. Maddage, C.Xu, M. Kankanhalli, and Q.Tian. Creat-
ing audio keywords for event detection in soccer video. In IEEE
ICME 2003, volume 2, pages 281–284, 2003.
 [8] E. Su, X. Tian, M. Girkar, et. al. Compiler support of the
workqueuing execution model for Intel SMP architectures. In the
fourth European workshop on OpenMP (EWOMP), 2002

[9] Y. Shi. Reevaluating Amdahl's law and Gustafson's law. Avail-
able at http://www.cis.temple.edu/~shi/docs/amdahl/amdahl.html
[10] W. Kraajj, A.F. Smeaton, P. Over, TRECVID 2004-An intro-
duction, in TRECVID 2004 Proceedings, http://www-
nlpir.nist.gov/projects/trecvid/
[11] Intel Corp. Intel® Integrated Performance Primitives (Intel®
IPP). Available at http://www.intel.com/software/products/ipp
[12] Intel Corp. VTune performance analyzer. Available at
http://www.intel.com/software/products/vtune

24

