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ABSTRACT

Large amount of images need an efficient way of retrieving

them. The usual approach of manually annotating images

and/or providing a syntactic retrieval capability lacks flex-

ibility and comfort. The automatic annotation of images

is a main target of the image retrieval community. These

so called content-based image retrieval (CBIR) systems fo-

cus on primitive features, as Eakins and Graham [1] name

them. Description logics (DL) offer a useful contribution

to content-based image retrieval while allowing logical rea-

soning about the semantic contents of the image and ending

with consistent classification results. This is a main advan-

tage about traditional classification algorithms. Another ad-

vantage is the possibility to use domain knowledge, which

is formulated in DL, on the retrieval side, thus offering a se-

mantic retrieval. In this paper we present an approach and

the results of adopting a DL for classifying image regions.

1. INTRODUCTION

Today, it is even for a single person easy to obtain large

amounts of images from the internet or through digital pho-

tography. To avoid worthless archives of unorganized data,

metadata annotation is necessary. However, good annota-

tions are very costly, but when done they offer a high pre-

cision and recall and the value of certain archives is multi-

plied.

According to Eakings and Graham [1] image retrieval

can be categorized into three levels: primitive, logical and

abstract. Many retrieval systems move only to the primitive,

syntactic level, which is the lowest one. More advanced

systems allow a search for logical objects of the image, and

therefore fulfill requirements for the higher, semantic levels.

The semantical search is in most cases1 the superior one.

In order to provide this it is more than useful to under-

stand the image content. To understand the true content

of an image it is necessary to have knowledge about the

domain the image belongs to and to be capable to reason

about this knowledge. Description logics (DL) provide an

1There are domains where a keyword indexing of images is not possi-

ble, due to their nature. Trademark logos are an example for these kind of

images.

efficient way of managing knowledge and to do reasoning

steps over it. The integration of a DL into object recognition

can be done roughly in two ways: fully integrated or with

an on–the–top–approach. The latter one requires a tradi-

tional classification of image regions with the DL placed on

top, doing verification of the results. Our approach consists

of the integration of the DL into the classification process,

namely doing the classification with a DL. The target is to

end up with consistent classification results due to the adap-

tion of domain knowledge, e.g. constraints about spatial

relations.

In this paper we present a supervised learning system,

called OntoPic, which provides an automated annotation for

images in the domain of landscapes, and therefore provides

a content–based image retrieval on a semantical level. It is

obvious, that our approach allows an easy adaption to other

domains.

2. THE CBIR-SYSTEM PICTUREFINDER

PictureFinder has been developed at the Center for Comput-

ing Technologies at the University of Bremen (cf. [2]). The

module that is responsible for the high–level annotation of

images is called OntoPic.

The rough principle of OntoPic is sketched as follows:

An expert models a domain depended ontology and trains it,

by assigning prototypical image regions to concepts of the

domain. The system automatically extracts the features of

the assigned regions and extends the knowledge base with

rules which map the feature values to the concept. An on-

tology enriched in this way can afterwards be used for an

automatic annotation of an image by classifying the regions

of this image. Therefore the system can be divided into two

parts: Training and analysis.

Instead of using a DL for modelling the domain knowl-

edge, we use more common ontology languages. This is

possible, due to the fact that languages like DAML+OIL

provide a well–defined mapping to the DL SHIQ [3]. As a

reasoner for DL we use RACER. Further information about

RACER and the semantics of the notions used throughout

this paper is given in [4].
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2.1. Training the ontology

The target of the training part is to build a mapping between

the syntactic and semantic level. The image regions can be

extracted automatically by a color segmentation, and treat-

ing areas with similar colors as image regions. To ensure

a “semantic meaningful” segmentation [5] the trainer can

manually correct the results of the automated segmentation

during this training step. The vital part of the training is the

assignment of segmented image regions to concepts of the

domain.

2.2. Feature Extraction

To handle the continuous feature values inside the DL we

discretize these values. We deal with the known disadvan-

tages of the disrectization, like overlappings in the feature

space, by applying knowledge about spatial constraints. Us-

ing these constraints it is possible to discard incoherent con-

cept assignments, as described later.

2.2.1. Color, Texture and Background Membership

For discretizing color the RGB value is converted into HSB2

color space and then transformed into the Color Naming

System (CNS, cf. [6]). The CNS describes colors with nat-

ural language names as a composition of a saturation and

lighting prefix with a description for the hue value, e.g.,

“very–light–vivid–green”.

A texture is either of kind multiarea, homogeneous or

speckled. A texture of kind multiarea can be described as

rippled or hatched, and a speckled texture additionally as

hatched.

The background membership is either true or false. As

an indicator for this membership, the intersection of a region

with the image border is taken.

Because of the features’ different discriminating power

they are also weighted differently. The background mem-

bership for example, is the lowest weighted feature. The

assignment of weights is done in a postprocessing step dur-

ing the interpretation of the classification results.

2.2.2. Spatial Relations

When dealing with spatial relations one has to distinguish

between two different kinds. The first are universally valid,

the second are only common spatial relations that occure in

images of the specific domains. The first one can define spa-

tial constraints, while the latter can help by classifying im-

age regions. The contribution to the classification is based

on the fact, that there is often a correlation between two

concepts concerning a spatial relation. As an example, an

2The HSB color system is analogous to the HSV system.

ocean can be found beside a beach and a lake beside grass-

land. These are not universal rules but valuable evidences,

which can establish the difference between a right or wrong

classification.

The following spatial relations are taken into account:

isAbove, isBelow and liesBeneath.

2.3. Axiom–Building

After extracting the region features they can be used to build

concept axioms for the manually trained concepts from the

training set. The principle is to build a mapping between the

low–level features and the high–level concepts via the DL.

2.3.1. Challenges and Solutions

To avoid the problem that every concept must be trained

in every prototypical occurence a fuzzy logic approach is

the classical solution. Unfortunately, there are no existing

reasoning systems with the power of DL systems until now

[7] which would cover this approach.

To cope with this problem our approach is to a pseudo–

extension of the DL to fuzzy logic or—to be more specific—

a reduction of the fuzzy logic for use inside a DL [7]. The

idea is to enrich the concept names with information about

the degree of membership, resulting in a concept that we

call µ–concept. For example, the µ–concept Tree≥0.5 is

interpreted as an instance of the concept Tree with degree

c ≥ 0.5. A parsing and interpretation of these concept

names allows for an evaluation of the results. The logical

relations between the different µ–concepts have to be de-

fined inside the ontology.

In our approach we do not use numbers to enrich the

concepts, but identifiers for every feature. If a feature is the

source for the belief that a region belongs to a concept, the

identifier of the feature is added to the concept name.

The features color, texture and background are identified

by the characters C, T and B. A spatial relation is treated as

a special feature as described in the next section. For every

trained concept CN it is necessary to auto–generate the fol-

lowing statements, which define the logical coherences be-

tween the enriched concept names:

CNCT

.
= CNC ⊓ CNT

CNCB

.
= CNC ⊓ CNB

CNTB

.
= CNT ⊓ CNB

CNCBT

.
= CNC ⊓ CNB ⊓ CNT

The first definition states that every instance of the concept

CNCT is an instance of the concepts CNC and CNT and

vice versa. Detailed information about the semantics can be

found in [4].



2.3.2. Extending the Knowledge Base

For each concept the trainer has assigned to an image re-

gion, the Terminological Box (TBox)3 is extended by map-

ping from the image region features to the concept. For-

mally, for every image region with corresponding feature

identifiers F1...Fm, feature roles R1...Rm, feature values

respectively role fillers V1...Vm and an assigned concept

CN , the following statements are added to the TBox:

∃ R1.V1 ⊑ CNF1

...

∃ Rm.Vm ⊑ CNFm

With these statements it is ensured that a region with

the value V1 for the feature role R1 is an instance of the

concept CNF1
. The following statements are an example

for the assignment of a water region to the concept water:

∃ hasColor.blue ⊑ WaterC

∃ hasTexture.homogeneous ⊑ WaterT

∃ isBackground.true ⊑ WaterB

The spatial relations of an object receive a special treat-

ment. For every region the spatial relations to its neighbours

are determined. In detail, a match for the spatial relation

feature is given, if the region to be classified is in the same

spatial relation to a neighbour as a formerly trained one.

2.4. Classifying an Image

The classification of segmented image regions is the main

task of the DL. Subsequently, for every region an individual

is created inside the ABox. The extracted region features

are assigned via the proper role declarations to these indi-

viduals. To classify the regions, it is only necessary to let

the reasoner query for the individual direct types of the re-

gion instances. The direct types of an individual are the

most specific concepts an individual is instance of. The re-

sult of this classification are enriched concept names (like

WaterCT ). The indices of these enriched concept names

can be interpreted as the feature matches, responsible for

the classification result. This allows a weighting of the re-

sults. For example, the concept WaterCT is preferred over

SkyTB as the direct type of an individual, because the color

match has a bigger weight than the texture match.

3The Terminological Box holds the general concept inclusions (GCIs).

Together with the extensional knowledge in the Assertional Box (ABox) it

forms a knowledge base.

2.5. Non–Concepts/Postprocessing

The target of this postprocessing step is to end with a con-

sistent classification of the image regions. Consistency has

to be understood with respect to spatial constraints. Instead

of simply defining rules like “water is never above sky”,

which leads to an inconsistency in the ABox, we introduce

a new concept type which we name non–concept. The oc-

curence of such non–concepts in a classified image has to

be understood as a contradiction which has to dissolved ex-

ternally. The following example should clarify the use of

non–concepts: The non–concept non–water is defined as a

water concept which lies above a sky concept:

Water ⊓ ∃ isAbove.Sky ⊑ NonWater

If we classify an image region as water and this region lies

above a sky region the reasoner can deduce that there is an

inconstistency in the classification result. It has to be men-

tioned, that in the former example the sky region as well

would be classified as non–sky. By removing non-concept

instantiations, starting with the lowest degree of member-

ship, such inconsistencies can be resolved. An image clas-

sification is therefore treated as consistent if there are no

occurences of non–concepts. Some example images are

shown in [8].

2.6. Retrieval

The retrieval process is also supported by the ontology. Due

to the hierarchical organization of the ontology, it provides a

thesaurus for user queries. Furthermore, the ontology offers

this hierarchy for the support of query formulations. Ad-

ditionally, the domain dependent–knowledge can be com-

bined to allow for the search of scenes. For example, the

knowledge base could hold the information that a sky, a

beach, and water forms a beach scene.

3. RESULTS

For measuring the result quality a set of 85 different images

from the landscape domain was taken. 30 images were se-

parated and used as training images. Multiple independent

training steps were done, each which a different amount of

used concepts and assigned regions per concept. The target

of these training steps was to verify, how many concepts are

distinguishable by our approach.

The graphs in the figures above show the precision and

recall values for a set of five, ten and fifteen differently

trained concepts. As expected, the ideal amount of concepts

is low—between 5 and 10. The reason for this is based on

the fact, that there exists different concept classes which we

call base and logical concepts. Base concepts are mainly de-

fined through their syntactic attributes like a specific color
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Fig. 1. Precision and recall for different numbers of assignemnts per concept and sets with a different concept amount.

or texture. Whereas a logical concept is defined through its

relation to other base concepts and the context of the image.

For example the concept sand is a base concept but the con-

cept beach is a logical concept, which—as a specialization

of sand—can only be distinguished from the concept sand

by the context, e.g. the spatial relation to a nearby ocean.

As a consequence of this, it is necessary to map only the

base concepts to image regions.

It has to be mentioned, that it is possible to derive logical

concepts from a set of base concepts. Therefore an annota-

tion only consisting of base concepts is a kind of “semantic

preserving image compression” [9]—regarding the annota-

tion.

It has be shown, that it is sufficient to assign two proto-

typical regions per concept to get the best tradeoff between

precision and recall. More assignments per concept lead to

a better recall while minimizing the precision. One reason

for this result is the fact, that a higher number of assign-

ments raises the probability of assigning non–prototypical

regions.

4. FURTHER WORK

As a consequence of this project the next step is to de-

fine a mechanism which automatically falls back to base

concepts if a logic concept is trained directly. The sys-

tem should only apply logical rules—like constraints about

spatial relations—to logical concepts. This improvement

should hopefully lead to a state, where the system is capable

of learning from spatial relations of logical concepts.
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C. Lutz, R. Möller, and S. Bechhofer, Eds., Ulm, Ger-

many, Sept. 2004.

[9] A. Pentland, R. W. Picard, and S. Sclaroff, “Photobook:

Tools for Content-Based Manipulation of Image Data-

bases,” in SPIE Proceedings: Storage and Retrieval

for Image and Video Databases II, San Jose, CA, USA,

Feb. 1994, pp. 34–47.


	Index
	ICME 2005

	Conference Info
	Welcome Messages
	Venue Access
	Committees
	Sponsors
	Tutorials

	Sessions
	Wednesday, 6 July, 2005
	WedAmOR1-Action recognition
	WedAmOR2-Video conference applications
	WedAmOR3-Video indexing
	WedAmOR4-Concealment &amp; information recovery
	WedAmPO1-Posters on Human machine interface, interactio ...
	WedAmOR5-Face detection &amp; tracking
	WedAmOR6-Video conferencing &amp; interaction
	WedAmOR7-Audio &amp; video segmentation
	WedAmOR8-Security
	WedPmOR1-Video streaming
	WedPmOR2-Music
	WedPmOR3-H.264
	WedPmSS1-E-meetings &amp; e-learning
	WedPmPO1-Posters on Content analysis and compressed dom ...
	WedPmOR4-Wireless multimedia streaming
	WedPmOR5-Audio processing &amp; analysis
	WedPmOR6-Authentication, protection &amp; DRM
	WedPmSS2-E-meetings &amp; e-learning -cntd-

	Thursday, 7 July, 2005
	ThuAmOR1-3D
	ThuAmOR2-Video classification
	ThuAmOR3-Watermarking 1
	ThuAmSS1-Emotion detection
	ThuAmNT1-Expo
	ThuAmOR4-Multidimensional signal processing
	ThuAmOR5-Feature extraction
	ThuAmOR6-Coding
	ThuAmSS2-Emotion detection -cntd-
	ThuPmOR1-Home video analysis
	ThuPmOR2-Interactive retrieval &amp; annotation
	ThuPmOR3-Multimedia hardware and software design
	ThuPmSS1-Enterprise streaming
	ThuPmNT1-Expo -cntd-
	ThuPmOR4-Faces
	ThuPmOR5-Audio event detection
	ThuPmOR6-Multimedia systems analysis
	ThuPmOR7-Media conversion
	ThuPmPS2-Keynote Gopal Pingali, IBM Research, &quot;Ele ...

	Friday, 8 July, 2005
	FriAmOR1-Annotation &amp; ontologies
	FriAmOR2-Interfaces for multimedia
	FriAmOR3-Hardware
	FriAmOR4-Motion estimation
	FriAmPO1-Posters on Architectures, security, systems &a ...
	FriAmOR5-Machine learning
	FriAmOR6-Multimedia traffic management
	FriAmOR7-CBIR
	FriAmOR8-Compression
	FriPmOR1-Speech processing &amp; analysis
	FriPmSS1-Sports
	FriPmOR2-Hypermedia &amp; internet
	FriPmOR3-Transcoding
	FriPmPO1-Posters on Applications, authoring &amp; editi ...
	FriPmOR4-Multimedia communication &amp; networking
	FriPmOR5-Watermarking 2
	FriPmSS2-Sports -cntd-
	FriPmOR6-Shape retrieval


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	1 SIGNAL PROCESSING FOR MEDIA INTEGRATION
	1-CDOM Compressed Domain Processing
	1-CONV Media Conversion
	1-CPRS Media Compression
	1-ENCR Watermarking, Encryption and Data Hiding
	1-FILT Media Filtering and Enhancement
	1-JMEP Joint Media Processing
	1-PROC 3-D Processing
	1-SYNC Synchronization
	1-TCOD Transcoding of Compressed Multimedia Objects
	2 COMPONENTS AND TECHNOLOGIES FOR MULTIMEDIA SYSTEMS
	2-ALAR Algorithms/Architectures
	2-CIRC Low-Power Digital and Analog Circuits for Multim ...
	2-DISP Display Technology for Multimedia
	2-EXTN Signal and Data Processors for Multimedia Extens ...
	2-HDSO Hardware/Software Codesign
	2-PARA Parallel Architectures and Design Techniques
	2-PRES 3-D Presentation
	3 HUMAN-MACHINE INTERFACE AND INTERACTION
	3-AGNT Intelligent and Life-Like Agents
	3-CAMM Context-aware Multimedia
	3-CONT Presentation of Content in Multimedia Sessions
	3-DIAL Dialogue and Interactive Systems
	3-INTF User Interfaces
	3-MODA Multimodal Interaction
	3-QUAL Perceptual Quality and Human Factors
	3-VRAR Virtual Reality and Augmented Reality
	4 MULTIMEDIA CONTENT MANAGEMENT AND DELIVERY
	4-ANSY Content Analysis and Synthesis
	4-AUTH Authoring and Editing
	4-COMO Multimedia Content Modeling
	4-DESC Multimedia Content Descriptors
	4-DLIB Digital Libraries
	4-FEAT Feature Extraction and Representation
	4-KEEP Multimedia Indexing, Searching, Retrieving, Quer ...
	4-KNOW Content Recognition and Understanding
	4-MINI Multimedia Mining
	4-MMDB Multimedia Databases
	4-PERS Personalized Multimedia
	4-SEGM Image and Video Segmentation for Interactive Ser ...
	4-STRY Video Summaries and Storyboards
	5 MULTIMEDIA COMMUNICATION AND NETWORKING
	5-APDM Multimedia Authentication, Content Protection an ...
	5-BEEP Multimedia Traffic Management
	5-HIDE Error Concealment and Information Recovery
	5-QOSV Quality of Service
	5-SEND Transport Protocols
	5-STRM Multimedia Streaming
	5-WRLS Wireless Multimedia Communication
	6 SYSTEM INTEGRATION
	6-MMMR Multimedia Middleware
	6-OPTI System Optimization and Packaging
	6-SYSS Operating System Support for Multimedia
	6-WORK System Performance
	7 APPLICATIONS
	7-AMBI Ambient Intelligence
	7-CONF Videoconferencing and Collaboration Environment
	7-CONS Consumer Electronics and Entertainment
	7-EDUC Education and e-learning
	7-SECR Security
	7-STAN Multimedia Standards
	7-WEBS WWW, Hypermedia and Internet, Internet II

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Jean-Pierre Schober
	Thorsten Hermes
	Otthein Herzog



