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ABSTRACT
An architecture for shape recognition is presented, with empha-
sis on low-latency and power efficiency. This architecture is an
extension of an existing architecture used for motion estimation.
A number of algorithms were mapped to this architecture. Bounds
related to power are given per frame for memory access rates. Face
detection within CIPR CIF sequences was used as a target appli-
cation, with feasible frame rates of 30fps attained. Power results
for this extended architecture correlate with power consumption of
the existing architecture.

1. INTRODUCTION

Shape recognition is a fundamental process associated with a di-
verse area of research which includes video sequence classifica-
tion, tracking, and surveillance. The overall goal is to facilitate if
not replace the human involvement in these operations. One of the
most fundamental requirements of surveillance and security is the
determination if a person is within the field of vision provided by a
camera. In many cases, this is accomplished via shape recognition.
In addition, there are currently many more surveillance cameras
deployed in the United States than there are humans monitoring
said cameras. Clearly, this makes manifest an implicit need for
effective automation of monitoring.

Coupled with the need for recognition automation is a bur-
geoning interest in mobile surveillance and security systems, how-
ever, with the property of mobility comes the necessity for energy-
efficient systems. In addition, a large percentage of related appli-
cation areas are at least time-sensitive if not time-critical (i.e.: the
difference between detecting a hostile intruder before potentially
fatal action is taken) thus adding a need for real-time considera-
tions such as deadlines and scheduling.

While there is an ample body of work related to implementing
face detection at the software level, there is a dearth of hardware
architectures using application-specific integrated circuits or pro-
cessors (ASICs and ASIPs, respectively). As with many image
processing operations, software solutions tend to be rather com-
putationally complex[1][2]. Although this may not be an issue
on supercomputing systems or even workstations, the interest in
mobile systems mentioned previously mandates the utilization of
low-power, compact systems. These algorithms typically are de-
ployed on commodity general purpose processors. It is, however,
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infeasible to expect a mobile system to employ such a processor
due to energy, size, and heat constraints. Additionally, specify-
ing architectures is more oriented to our goals as the increase in
specificity reduces much of the overhead inherent in generalized
hardware.

As a result, we considered architectures for shape recogni-
tion. We pursued FPGA deployment, due to portability, availabil-
ity, and limited cost, with the goal of transitioning to an ASIC or
ASIP platform upon successful experimental results[3]. With this
in mind, the rest of this paper is organized as follows: Section 2
discusses previous work related to this paper, Section 3 gives a
brief overview of shape recognition as well as the algorithms we
considered, Section 4 discusses our proposed general architecture,
Section 5 provides power analysis for this architecture, while Sec-
tion 6 details results of experiments. Finally, Section 7 concludes
the paper.

2. PREVIOUS WORK

As mentioned, a substantial amount of work exists for solving the
problem of recognizing faces from a theoretical standpoint[4][2].
The problem lies in maintaining performance with reduced and
limited computational resources. Previously, an FPGA implemen-
tation was presented, however, it encompassed a large number of
FPGA boards[5]. Other work focused on an ASIC implemen-
tation of a face detection algorithm, with no analysis of power
consumption[6]. Additionally, work exists involving a new frame-
work for object detection mapped to an embedded general purpose
processor[7]. Work prior to this focusing on hardware approaches
relied primarily on latency as a performance metric[8].

What is lacking in this body of work is a generalized power
analysis of shape recognition architectures, in addition to a cost-
effective solution to the desire for mobile detection. It is important
to note, however, the similarities between shape recognition and
motion estimation architectures, for which architectures have been
pursued[9][10]. Also, power analysis has been performed for these
[11]. Before providing our architecture and power analysis, we
present an overview of shape recognition in the following section.

3. SHAPE RECOGNITION ALGORITHMS

In general, shape recognition algorithms belong to one of two clas-
sifications: feature-based and template matching. Feature-based
algorithms recognize shapes by considering geometrical informa-
tion available within an image. For example, in face detection,
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feature-based algorithms attempt to derive positional information
of facial attributes such as eyes and mouth. With template match-
ing, the input image is compared with a collection of reference
shape images. This comparison effectively consists of a correla-
tion operation giving a match ”score” between a particular mask
m and a correspondingly-sized region of the image i, that is:

Score(x, y) =
X

s

X

t

i(s, t) ∗ m(x + s, y + t) (1)

where s and t cover the region for which the image and mask over-
lap. A running tally is kept of the location and mask for which
highest correlation occurred. In the case of allowing for detect-
ing multiple instances of shapes, a threshold is employed such that
coordinates having scores exceeding said threshold are retained.
Since our focus is on low-power and low-latency architectures, ap-
proaches leading to a lower degree of complexity are of paramount
importance. As template-based algorithms tend to be of lower
complexity with higher accuracy, we considered their utility[12].

We note that shape recognition composed of template-based
matching with a relatively simple operation such as correlation is
in many ways similar to that of block-matching motion estimation.
As a result, we pursue algorithms associated with this technique,
specifically those providing favorable results in previous work[11].
These are Full Search, One-dimensional Full Search, Three-Step
Search, and Modified Log Search. All algorithms operate based
on the metric of image size (W x H), mask size (M x M), and the
number of considered overlays of the mask to the image, the last
of which varies between algorithms.

Full search performs correlation between every possible over-
lay of the mask to image. As expected, it is exhaustively accurate,
however, it is also computationally complex. The one-dimensional
full search algorithm attempts to reduce this complexity by re-
ducing the number of candidate templates. The best match on
a given row is determined, followed by a calculation of the best
match on the column of the previously found best match. The
three-step procedure chooses a window of templates for correla-
tion, which is then shifted to the center of the point with highest
correlation score, and repeated until an optimal location is found.
Modified log search is similar to three-step search, adding more
search points and centerpoint criteria for searching.

The primary distinction between each of these algorithms is
the number of areas searched for a given image. Also, aside from
the first two algorithms, there is data dependency inherent in these
procedures, which reduces potential for exploiting task granular-
ity. This will also likely mandate additional control hardware. In
the next section, we address these distinctions and present our pro-
posed architecture.

4. PROPOSED ARCHITECTURE

The architecture proposed attempts to address the aforementioned
demands for mobile shape recognition, and is presented in Figure
1. This architecture is an extension of that proposed by Yang et al.
[11]. The architecture consists of two main memories for frame
and mask storage, down and upsampling hardware, address gener-
ation hardware, and a number of processing elements (PEs).

Due to the use of FPGA targets, we model the entire system
on-chip. That is, we do not consider off-chip memory. Because
of our stated interest in ASIC extensions, however, we focus on
appropriate designs. Therefore, we model two large memories to
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Fig. 1. Proposed general shape recognition architecture

hold an entire frame and to hold all masks which are to be pro-
cessed. As will be discussed in the following section, our design
metrics are based on memory accesses, data flow rate and number
of operations performed. This architecture provides the potential
for reducing the number of operations performed via its downsam-
pling hardware. The number of operations decreases linearly with
an increase in sampling rate, however, this is at the expense of
recognition accuracy.

In the interest of exploiting granularity, multiple PEs are uti-
lized. The number of PEs is determined upon fitting the other
hardware onto the target deployment with only one PE. A block
diagram of a PE is shown in Figure 2. The PE contains buffers for
an individual sub-image and mask. These buffers recognize the
restrictive aspects of storing several copies of an image on-chip,
as well as the entire mask. The contents of these buffers are fed
to a processor array to perform correlation. This array consists
of a number of smaller processing elements which perform multi-
plication and addition, with an additional row of adders after the
final multiplication row. The use of this systolic array helps to
provide for efficient data flow as well as consistent resource util-
ity, while also reducing excess control and interconnect due to its
autonomous nature.

The address generation hardware in this architecture is used
to reduce memory accesses by performing overlap detection. For
many of these algorithms, some overlap may occur between sub-
images examined. Therefore, rather than reloading an entire sub-
image for each mask, the data is reused whenever possible. For
example, in the case of full search shape recognition, consider the
image as consisting of rows with elements of size equal to that of
the masks. Then, at the beginning of each such row, an entire ele-
ment must be loaded into the PEs image buffer. For the remainder
of iterations within that row, only the successive column must be
loaded into the image buffer, due to overlap. Employing the gen-
erators in this case significantly reduces the number of memory
accesses, thereby reducing power.

Upon completion of correlation, the determined score is then
compared both with a threshold for multiple shape recognition
and the current highest score. This is accomplished by the com-
pare/upsampling hardware. For appropriate scores, their values as
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Fig. 2. Proposed processing element

well as the center point of their location on the image are saved
locally, with the points upsampled and output as needed.

5. POWER ANALYSIS

For a mapping of each of the aforementioned algorithms onto the
proposed architecture, high-level power analysis was performed
by Yang et al. We apply these derivations to our extended archi-
tecture, while adding necessary extensions as needed. Our overall
goal is insight into the effectiveness of this extended architecture
as well as those algorithm mappings offering the best compromise
of power and performance. We focused on interconnect power,
buffer power, and processing element power as a sum of relevant
power consumption. In the interest of design exploration, the fac-
tors which are altered by algorithm selection were focused upon.
The first of these is the number of memory accesses. Transferring
data from memories to buffers is expensive, both in terms of power
and latency. This becomes an even larger problem for ASICs and
ASIPs, as we expect the memories to be off-chip in these cases.
By nature of their design, some algorithms will require fewer ac-
cesses than others, yielding a lower amount of power dissipation.
Next, the size of the correlation units within the PEs will also affect
power, as well as the related value of the number of operations per-
formed by these units. In the interest of having insight into general
performance of algorithms mapped to the architecture, we con-
sider bounds on these metrics. For each algorithm, we determined
bounds on the input and output data rates for the image and mask
buffers. The mask input and output rates are identical, since each
mask must be processed. Hence, the rates for the mask buffer are
defined as:

fm buf in = fm buf out · #Sub Img · N2
· #Masks (2)

The image buffer input rate is characterized by the amount of
image data required for processing a given sub-image. This is af-
fected by the algorithm employed, and potential for data reuse due
to overlap. The previously mentioned scenario for full search ap-
plies here. In this case, the image buffer must input at the following

rate:

fi buf in = fps(
W

M
· M2 + (

W

M − 1
· M)) (3)

Finally, the image buffer output rate is defined as:

fi buf out = fps · #Sub Img · #Overlays · #Masks (4)

The number of overlays to consider is the only variable in this
equation which is dependent upon algorithm selection. Bounds
on this quantity are presented in Table 5, where M represents the
number of overlays in a sub-image.

Alg #Overlays
FS (M)2

1D 3M − 1

3S 1 + 8log2(M/2)

ML 1 + 6log2(M/2)

Table 1. Data transfer rate variables

6. EXPERIMENTAL RESULTS

We considered face detection in sequences of CIPR CIF format
as a target application mapped to the proposed architecture. These
mandate image buffers of size 360x288. The PE buffers were sized
such that the frames were composed of four sub-images. Thirty
distinct masks composed the mask set, with scaling provided by
the sampling hardware. For each algorithm, power was acquired
using these parameters and the equations discussed in the previous
section. We assume that the main components of power consump-
tion are due to interconnect, processing elements, and memory ac-
cesses. Other power sources, including the operation power for ad-
dress generation, are considered negligible, and not included in our
calculations. The power for a single frame of CIF video is shown
in Figure 3. As expected, the full search algorithm consumes a
markedly greater amount of power than the other algorithms. For
this reason, the results were normalized with respect to the full
search values. It should be noted that these results correlate with
previously published results of Yang et al. for motion estimation.

7. CONCLUSIONS

This work pursued architectures for hardware implementations of
shape recognition algorithms. An extension to an existing architec-
ture for a power-efficient block-matching motion estimation was
developed. Power consumption, frame rate, and accuracy were
design criteria, with emphasis on power minimization through re-
duced memory accesses and lower hardware complexity. Exten-
sions to derived bounds were used to determine system power con-
sumption for a face detection application operating with a frame
rate of 30fps. We feel this architecture provides means to lower
power with its provision for novel data addressing and multi-resolution
capability.

Future goals include adaptation of this architecture for per-
forming associated operations, building upon our existing exten-
sion. Since technology scaling puts increased importance on leak-
age power, an analysis of leakage will be pursued, with focus on
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the tradeoff between buffer sizing, rotational compensation via
a lookup table of Gaussian functions, and the number of PEs.
Finally, reliability studies for this architecture would be helpful,
specifically for real-time scheduling considerations.
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