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ABSTRACT
This paper presents our latest work on identifying frame content
types for understanding learning media content. In particular, we
categorize frames into six classes namely, slide, web-page, instruc-
tor, audience, picture-in-picture and miscellaneous, which make
up salient narrative modes in learning videos. Various image and
video analysis approaches are explored to achieve this task. Pre-
liminary experiments carried out on three recorded seminars have
yielded encouraging results. The identification of fine-grained vi-
sual content types can assist us in content understanding, access,
browsing and searching of generic learning videos.

1. INTRODUCTION

Online learning or Web-based e-learning is rapidly emerging as
a viable means for offering customized and self-paced education
to students. Many universities and industrial organizations have
started offering online education and training programs as an al-
ternative to traditional classroom-based education. As a result, the
amount of instructional videos available on corporate intranets and
the Internet is dramatically increasing. This paper describes our
ongoing efforts on analyzing these learning media content to facil-
itate automatic content structuralization and annotation for various
e-learning applications.

Specifically, this work attempts to understand learning videos
such as recorded seminars by identifying the following six vi-
sual frame content types: slide, web-page, instructor, audience,
picture-in-picture and miscellaneous. As the name implies, the
first three categories contain a close-up view of a slide, a web-
page and the instructor, respectively. The audience frames, in con-
trast, refer to those containing a long shot of the meeting room.
We call a frame that has an embedded sub-image as a picture-in-
picture, which occurs, for instance, when the instructor launches a
demo. Note that the frame that has a small inset instructor picture
is not considered of this type. Finally, the miscellaneous category
accommodates all other currently unconsidered frame types. For
illustration purpose, Fig. 1 shows examples of the first five types.

(a) (b) (c) (d) (e)

Fig. 1. Five frame content types: (a) slide, (b) web-page, (c) in-
structor, (d) audience, and (e) picture-in-picture.

Video content analysis has been studied for decades, yet very

few research efforts have reported on the identification of frame
content in learning context. The only work that we found was
from Haubold and Kender [1], where a decision tree was applied
to classify keyframes into six categories including board, class,
computer, illustration, podium and sheet. Nevertheless, too many
heuristics were implied in that work which makes it impractical to
apply this approach to generic learning video content.

This paper proposes a robust hierarchical frame identification
scheme for understanding generic learning videos. It consists of
the following five modules to process a digital video stream: (1)
homogeneous video segmentation which partitions the video into
cascaded homogeneous segments; (2) picture-in-picture (PiP) seg-
ment identification which recognizes a PiP frame by exploiting
its unique characteristics in terms of content variation and phys-
ical locality; (3) agglomerative segment clustering which groups
segments with similar dominant colors into clusters; (4) instruc-
tor segment identification which recognizes the instructor frames
based on face analysis; and (5) audience/slide/web-page segment
identification which recognizes each of these three frame types
based on line profile analysis. Each module is detailed below.

2. HOMOGENEOUS VIDEO SEGMENTATION

This module aims at partitioning a video into homogeneous seg-
ments where each segment contains frames of the same content
type. We achieve this goal by developing an approach which is
sensitive enough to distinguish frames of distinct content types
while tolerating changes within frames of the same type. It pro-
ceeds in the following two steps.

2.1. Frame Content Change Detection

A peak-based histogram comparison algorithm is designed to de-
tect the content change between neighboring frames at this step.
Compared to the popularly used L1/L2-norm or histogram inter-
section based approaches, the proposed one is able to better tol-
erate content changes caused by digitization noise, jerky camera
motion and illumination changes. It proceeds as follows.

1. Given a frame, we first partition it into a MD ×ND grid,
compute an intensity histogram for each cell and identify its peaks.
Then, we associate each peak with its component bins (i.e., those
bins that contribute to the peak), and term it as a peak category.

2. For each frame pair, we compare their corresponding cells
by examining their peak categories (PC). Specifically, if major
component bins are shared by any peak category of both cells, we
claim that they have same content. For simplicity, we call the cell
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whose content remains the same as background (BG) cell; other-
wise, the foreground (FG) cell.

3. We quantify the content difference between two frames
by summing up the number of their FG cells. The frame content
change boundaries are then identified from the video’s FG cell dis-
tribution based on its detected peak locations. To ease the rest of
discussion, for each peak Pi that refers to a video content change
point, we denote its left and right flanks by P i

left and P i
right (in

unit of frame). We have also defined two processing periods, L2R
period and R2L period, where L2R expands from P i−1

right to P i+1
left,

and R2L in the opposite direction as shown in Fig. 2 (a).
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Fig. 2. (a) Descriptions of a peak, and (b) statistics of BGL and
BGR cells for one test video.

2.2. Homogeneous Segment Boundary Detection

Based on the frame content change boundaries, we now identify
the homogenous segment boundary using the following
bi-directional BG cell tracing approach.

1. Given peak Pi, we compute a temporal cell histogram CHL

over its L2R period (denoted by (P i−1
right, P

i
middle, P

i+1
left)), where

CHL
j indicates the number of consecutive frames for which cell

j’s content has remained unchanged since P i−1
right. Similarly, we

compute CHR over Pi’s R2L period except that we direct the
search backwards.

2. Examine if CHL
j exceeds the duration of (P i

right−P i−1
right).

If yes, it is a BG cell since it remains unchanged regardless of the
content transition across the peak. Evidently, the fewer the BG
cells, the more likely that Pi refers to a content change between
frames of distinct types. Denoting the number of BG cells identi-
fied over a peak’s L2R and R2L periods by BGL and BGR, we
plot their distributions in Fig. 2 (b) for one test video. We see
that for most of the time, the two values are consistent with each
other, i.e., when one is small, so is the other. Two exceptions are
observed though (indicated by the black arrows), with both being
caused by a camera zooming operation.

3. Identify the peaks that possess both small BGL and BGR

values, and mark them as the homogeneous segment boundaries.

3. PICTURE-IN-PICTURE SEGMENT IDENTIFICATION

This module identifies the segments that contain picture-in-picture
(PiP) frames by exploiting the following two facts: 1) a PiP seg-
ment normally presents a much larger content variation since the
content of the sub-image keeps changing over time; 2) the afore-
mentioned content change is confined to a local image area (i.e.,
the sub-picture area).

To measure the content variation of a segment, we first identify
the number of FG cells for every frame pair, then use their variance
as the indicator. Intuitively, the larger the variance, the higher the
content variation. In addition, we examine if all FG cells are lo-
cated within a restricted image area. Fig. 3 (a) plots the CHR cell
histogram calculated over a PiP segment, which clearly shows that
its major content change only occurs around the image center. We
apply a feature thresholding scheme to identify all PiP segments.
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Fig. 3. (a) The CHR histogram of a PiP segment, and (b) statistics
of two facial features of a test video.

4. AGGLOMERATIVE SEGMENT CLUSTERING

Observing that frames containing instructor, audience, slide and
web-page usually have distinct dominant colors, we group seg-
ments with similar color tones into clusters in this module.

We extract a frame’s dominant color by applying the hierarchi-
cal color clustering scheme proposed by Wan and Kuo [2]. Specif-
ically, it applies an octree color quantizer to cluster all image col-
ors into natural groups. Each tree node, in this case, defines a color
subspace, and is described by two quantities: the normalized num-
ber of pixels that pass through the node (pass-number p) and the
average color c (in Luv space) of these pixels. It has also consid-
ered various clustering resolution levels, and accordingly, desig-
nates the image’s dominant colors as the average of the first three
nodes that have the largest pass numbers at the coarsest resolution.

In this context, we first represent a frame by its three domi-
nant colors together with their respective pass numbers, and define
a segment’s dominant colors to be the average of its component
frames. The similarity between two segments is then measured
by taking both dominant colors and their pass numbers into ac-
count. Finally, we apply the agglomerative clustering approach
(with group average method) to perform the segment clustering,
which stops once the minimum inter-cluster distance exceeds a
pre-defined threshold. By intentionally using a small threshold,
we are able to identify tightly clustered segments while avoiding
false positives at the same time.

5. INSTRUCTOR SEGMENT IDENTIFICATION

This module identifies the instructor segment by exploiting two
facial features: face-contained frame ratio fr, and duration of the
longest face sub-sequence fd. Specifically, for a segment S, fr
indicates the percentage of frames that contain a face, while fd in-
dicates the duration of its longest subsequence within which every
frame is face-contained. Intuitively, an instructor segment shall
have a higher fr ratio than a segment containing slides or web-
pages. The adoption of fd feature, however, comes from the ob-
servation that, when a face is truly detected in a frame, it should



remain detectable in multiple subsequent frames due to the con-
tent continuity. A face may be falsely identified in one frame, yet
the possibility of making the same mistake in a row will be much
lower. Fig. 3 (b) plots the distribution of two facial features (nor-
malized) for a test video, which supports the observation very well
that if both features reach their local maxima over a segment, it
will be a truly instructor segment.

We identify instructor segments by empirically thresholding
their facial features. In addition, we check the percentage of de-
tected instructor segments for every cluster C. If it exceeds 0.5,
then we designate C as an instructor cluster and consequently, set
all of its segments to the instructor type.

6. IMAGE LINE PROFILE ANALYSIS

This module extracts various image and text features from video
frames which are subsequently applied to distinguish audience,
slides and web-page frames. It proceeds in the following five steps.

1: Image smoothing, sharpening and unwarping. We apply this
step to improve the original image quality which may have been
reduced in the course of video projection and digitization, and to
unwarp the image in case of foreshortened video frames.

An edge-strength guided smoothing approach is first applied
to smooth the image which preserve edges at the same time [3].
Then, we apply image sharpening to enhance object edges. Finally,
we perform image unwarping [4] to correct foreshortened video
frames if necessary (this is currently manually determined). Fig. 4
(b) shows the unwarped version of the slide in (a).
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Fig. 4. (a) A slide, (b) the unwarped slide, (b) the Canny edge
map, (c) the neighborhood edge map, (d) the text map, and (e) the
line profile.

2: Canny edge detection. Given the smoothed, sharpened and
unwarped image I , this step performs a Canny edge detection to
obtain its edge map [3]. Fig. 4 (c) shows the slide’s edge map
where all horizontal and vertical straight lines have been removed.
3: Text map extraction. This step locates the image’s possible
text regions by exploiting the following two facts: 1) a text charac-
ter has strong vertical and horizontal edges; and 2) text characters
are always grouped in words, sentences and paragraphs.

Specifically, we first derive a neighborhood edge map (NEM)
from I’s Canny edge map by setting pixel p’s value to the average
of its neighboring area. One example is shown in Fig. 4 (d), which
clearly shows that pixels residing in a tightly clustered text regions
are much brighter than those on line edges. Then, we binarize
the NEM map using a fixed threshold (currently set to 8), perform
a morphological open operation to fill holes within text lines, and
remove image lines that contain extremely fewer number of pixels.

Fig. 4 (e) shows the text map that we finally obtained for the slide
in (a).
4: Title line detection. This step identifies the image’s title line
which: 1) is the first text line in the image; 2) is well separated
from other texts; and 3) has all of its texts tightly connected to-
gether. A line profile analysis is performed to achieve this goal.
Specifically, the line profile reveals the overall text distribution in
an image [5], which is currently obtained by summing up all text
pixels in each image row. The line profile for the slide example is
shown in Fig. 4 (f).

To detect the title line, we first identify all distinct peaks from
the line profile. In the example of Fig. 4, totally 11 peaks are
detected, each of which, as we could easily tell by comparing (e)
and (f), refers to one text line. The stop valley between two peaks,
in this case, corresponds to the space between lines. Then, starting
from the first peak, we locate the line pointed by the peak tip, and
examine the average distance between every of its two adjacent
text pixels. In this context, a large distance will indicate that the
line has sparsely distributed texts which decreases its possibility
of being a title line. Consequently, we ignore the current peak and
continue with the next.
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Fig. 5. (a) Text map and (b) line profile, of the web-page in Fig. 1
(b); (c) text map and (d) line profile, of the audience frame in Fig. 1
(d).

In the slide example, the line pointed by the first peak makes
a perfect title line, so does in case of the web-page (Fig. 1 (b))
whose text map and line profile are shown in Fig. 5 (a) and (b),
respectively. In contrast, for the audience frame in Fig. 1 (d), no
qualified title lines could be found as evident from its text map
and line profile in Fig. 5 (c) and (d). These results conform to the
ground truth very well.
5: Feature extraction. Based on the above analysis, we extract
the following five features from every video frame: coordinates
of the rectangle that bounds all text pixels (COR), the number
of horizontal/vertical lines that are longer than half of the image
width/height (HL, V L), the distance from the top frame edge to
the title line (TD), and the width of the title line (WT ). Especially,
feature COR reveals the texts’ physical distributions, while HL
and V L examine the existence of long straight lines in displayed
content. Finally, feature TD indicates the title position and WT
embodies the text size.

7. AUDIENCE, SLIDE AND WEB-PAGE SEGMENT
IDENTIFICATION

We now distinguish the audience, slide, and web-page segments
by making use of the following three observations: 1) the audi-
ence frame usually has scattered text pixels without a title line; 2)
multiple horizontal lines corresponding to the address and title bars
are usually detected in web-pages which is not true for the audi-
ence frame; and 3) slides of the same presentation should have title
lines at similar physical locations with similar font sizes, which is
not likely with web-pages.



A two-step process is performed to fulfill this task. First,
we derive five segment-level features from its component frames
based on a voting scheme: the text distribution pattern, the number
of horizontal and vertical lines (HL and V L), the distance from
the title line to the top frame edge (TD) and the title width (WT ).
Note that a quantization scheme has been applied to tolerate minor
measurement variations for the last two features. Then, we derive
five cluster-level features from its component segments (excluding
the outliers): the text distribution pattern, the averages of HL and
V L, and the variation of TD and WT .

Now, if a cluster has text spread without vertical, horizontal
or title lines, we set its segment label to the audience type. Other-
wise, we examine the variations of TD and WT . If both of them
are smaller than pre-defined thresholds, it shall contain slides; oth-
erwise, it contains web-pages if the average number of horizontal
lines exceeds a threshold. Finally, the miscellaneous class accom-
modates all unclassified clusters, leaving room for further future
classification. Note that thresholds applied in this decision process
are all empirically determined.

8. EXPERIMENTAL RESULTS

Preliminary experiments were carried out on three learning videos
to validate the proposed approach. All three videos were taken
from a collection of pre-recorded e-seminars at IBM Research with
an average duration of 90 minutes. Precision and recall rates were
evaluated for the detection of homogeneous segments, as well as
the identification of segments containing the five content types.
Table 1 lists the ground truth for each test video where column 1
specifies the total number of homogeneous segments while the rest
indicates the number of segments of each type.

Table 1. Grountruth of the three test videos.

H. Seg PiP Inst. Aud. Slide Webpage
Video 1 16 3 5 0 3 4
Video 2 78 0 26 22 18 9
Video 3 67 0 18 21 21 0

The homogeneous video segmentation performed well on all
three videos except that in Video 1, two neighboring segments,
which contain web-pages and instructor respectively, were mistak-
enly returned as one due to the extremely slow content transition.
It also fails to separate two slide segments from their neighboring
web-pages in Video 2. On average, we achieved 100% precision
and 97.1% recall rates.

The picture-in-picture frame type was only observed in Video
1, which was successfully recognized. In addition, we achieved
93% precision (100% recall) rate on detecting instructor segments
with only five false alarms in total. Specifically, three of them
were caused by human faces in web-pages and the host’s face,
while the other two resulted from false inclusion of two audience
segments in the instructor clusters. This imperfect clustering also
led to three false negatives in identifying the audience segments,
which resulted in in 97% precision.

In the case of slide segments, perfect identification was achieved
for the first two videos with one false alarm in Video 3 due to the
false inclusion of an audience segment in slide clusters. Finally,
all four web-page segments were correctly identified in Video 1,

whereas two web-page segments in Video 2 were mistaken as in-
structor type due to the existence of human faces, thus leading to
100% and 89% precision and recall rates. No web-pages were
found in Video 3.

Fig. 6 shows the temporal distributions of the five frame con-
tent types observed in test videos. Each vertical bar indicates one
segment whose width is proportional to its duration and whose
color indicates its content type. Specifically, we use red, green,
blue, cyan and black to represent slide, web-page, instructor, audi-
ence and picture-in-picture segments, respectively (note that most
audience segments are too short to be visible in the figure). From
the figure we see that, compared to Video 1, the other two are better
edited where much shorter segments nicely alternate between dif-
ferent content types following a pre-determined pattern. We also
observe that slide and instructor are the two main content types
in these test videos, which should be true for most presentation-
assisted learning videos.
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Fig. 6. Distributions of the five frame content types in test videos.

9. CONCLUSION AND FUTURE WORK

A hierarchical frame content identification scheme is presented
in this paper which recognizes five major visual content types in
learning videos. Compared to reported work, the features we ex-
ploited to achieve this task are more general and could thus be
applied to videos in various learning domains. Many applica-
tions such as mobile e-learning and e-learning content manage-
ment could be developed based on the proposed work. Currently,
we are exploring more effective features to distinguish slides from
web-pages, as well as considering other possible content types
such as whiteboard. We will also conduct extensive experiments
to validate the performance of the proposed system.
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