
PERFORMANCE EVALUATION OF MULTIMEDIA SERVICES OVER IP NETWORKS

Odd Inge Hillestad Bjornar Libak Andrew Perkis

Centre for Quantifiable Quality of Service in Communication Systems
Norwegian University of Science and Technology

Trondheim, Norway
e-mail: {hillesta, libak, andrew}@Q2S.ntnu.no

ABSTRACT

We present a streaming media test bed for IP networks. Besides a
streaming server and a streaming media client, it consists of an IP
network emulator, a high-performance packet capture device and a
packet flow regenerator enabling repeatable performance measure-
ments of streaming media applications and network QoS mecha-
nisms in a controlled environment. Some initial results from the
work involved in verifying the performance of the packet regener-
ator are also presented.

1. INTRODUCTION

Streaming services over IP networks are gaining momentum, and
consumers show an increased interest in being able to play and
enjoy their media wherever they are. Deployment of high speed
Internet access networks and continuous development of more ef-
ficient compression schemes for audio and video are two of many
important factors enabling higher quality IP-based multimedia ser-
vices to end-users. The recent success and large-scale deployment
of portable media players indicate a consumer demand for porta-
bility requiring transparent delivery of media resources to end-
users irrespective of network access type, current network condi-
tions or limited capabilities of the end-user’s communication de-
vice. Research in these topics form the basis for the concept of
UMA (Universal Multimedia Access) [1]. Ideally, all processing
in both end-systems and network nodes for a given multimedia ap-
plication should strive to maximize the end-user’s perceived qual-
ity of this application. Measuring end-users perception of audio-
visual quality or to which extent they react objectionable to dis-
tortions introduced by compression and packet-switched transmis-
sion is extremely difficult and depends on factors that are not eas-
ily modeled (e.g. human diversity, preferences and application
knowledge). VQEG (Video Quality Experts Group) [2] is cur-
rently working towards a standardization of quality metrics that
could be employed by multimedia streaming applications.

Figure 1 depicts a typical streaming session in which some
pre-encoded media content is being delivered from a streaming
server. Compressed media data is wrapped in RTP, UDP an IP
headers, and transmitted over an access network. On the network
layer, the media data is only recognized as a packet flow through-
out the session. Because IP networks introduce packet loss, delay
and delay jitter, a playout buffer is needed both to absorb the vari-
ation in delay and allow for retransmission of dropped packets. To
alleviate the effect of missing media data, the decoder should be
error resilient and be able to perform error concealment [3][4].

In this paper, we present a IP-based streaming media test bed
for evaluating the performance of streaming media applications
and different strategies that enable network Quality of Service (QoS)
for these applications. The test bed is flexible in that it consists of
a set of off-the-shelf and/or open-source software components that
can be put together to simulate a specific streaming scenario. Be-
sides streaming servers and streaming media client software, com-
ponents include a controlled test network, a hardware network em-
ulator, a high-precision packet capture device and a packet stream
regenerator to enable accurate recreation of specific network con-
ditions.

To be able to run repeatable tests and measurements in a con-
trolled environment using real streaming media systems and real
network devices, we need to verify the performance and precision
of the testbed components. For instance, to be able to recreate
specific network scenarios for interactive applications that require
low bounds on delay (and buffer sizes), we must verify that the
variable delay introduced by network emulation and packet stream
regeneration will not considerably affect our results. The paper
is organized as follows; Section 2 describes the different network
and end-system components of the testbed, section 3 gives some
preliminary results of the performance of our packet regenerator,
while section 4 gives a short summary and discussions.

2. STREAMING MEDIA TEST BED

Conceptually, the test bed consists of an application part and a
network part, where the former is media aware, and the latter can
be either media aware or unaware. Before describing each compo-
nent, an overview of the network part is presented.

In general, the network part of the testbed setup can consist
of several manipulation elements {mi}n

i=0 which distort the orig-
inal flow by introducing packet loss and delay. Examples are real
routers and switches fed with competing traffic, software routers,
network simulators (e.g. ns-2[5]), or network emulators. The ele-
ments will be chained together like shown in figure 2.

Fig. 2. Chain of n flow manipulation elements

The transfer of flows between elements can either be done on-
line, by having a network link between the two elements, or of-
fline, by capturing the flow and writing it to a trace file together

0-7803-9332-5/05/$20.00 ©2005 IEEE

Fig. 1. Streaming system

with timing information for later manipulation. Further, we can
say that each offline transfer divides the chain into two phases,
separate in time. Typically, an offline transfer is necessary when
the element on the right hand side is a Discrete Event Simulator,
which because of its own time-scale needs to reside in a separate
phase. After offline manipulation, it may be necessary to regen-
erate the packet flow using a flow regenerator. Regeneration is
another phase separation point. It may be used to replay a cap-
tured flow into a router, or to replay an already manipulated flow
for reception at the media decoding host.

Figure 3 gives an overview of the specific test bed setup re-
ferred to throughout this paper. The packet flow originates at the

Fig. 3. Test bed overview

streaming server, and ends up at the decoding host. In the middle,
there is a simple network part only consisting of a single manipu-
lation element, namely a network emulator. After passing through
the emulator (phase 1), the flow is captured by a capture device,
and later replayed by a flow regenerator (phase 2)1. None of the
components in the network part are media-aware, i.e. all opera-
tions are performed on IP level or below.

Our aim is to study the effect of packet loss and delay on
packet flows containing media data in a controlled environment.
It is therefore crucial that no unexpected non-measurable delay is
introduced by any of the components. In section 3, we present
results indicating the delay introduced by the packet regenerator.

1The experiments in this paper could have been conducted using a one-
phase setup. However, for convenience, and also to test and verify the flow
capture and replay components, two phases were used.

2.1. Streaming media server

In our testbed setup, the Envivio 4Sight MPEG-4 Streaming Server
(4-Sight) [6] is used. The server transmits pre-encoded MPEG-4
video over RTP/UDP [7] by parsing the hint track available in an
MP4 file [8]. The framing and timing information available in this
hint track decides how video data is mapped into RTP packets and
sent across the test network. As we are using the playlist broad-
caster functionality available in both 4-Sight and open-source al-
ternative Darwin Streaming Server [9], no RTSP negotiation is per-
formed prior to transmission.

2.2. IP Network Emulator

Network emulation is a way of synthetically subjecting applica-
tions and hosts to real-world network impairments. While network
emulators can not match the controllable and repeatable character-
istics of discrete event simulators, they offer real-time operation,
are easily modifiable and offer better repeatability than measure-
ments in live networks [10]. Network impairment patterns such as
packet loss, delay, jitter and bandwidth constraints are just some
of the parameters configurable in a network emulator. In our test
bed, we use the PacketSphere Network Emulator from Empirix
[11], which is a commercial solution, while Nist Net [12] is an
open-source network emulator for Linux.

2.3. Capturing packet flows

To capture packet flows, an Endace DAG3.5E card [13] was used.
This is a network monitoring interface card capable of captur-
ing incoming packets at high rates without loosing packets. The
packets are written to a trace file which format includes the packet
headers (link layer and IP), IP payload and a microsecond preci-
sion timestamp for each packet, reflecting the arrival time relative
to the first packet in the flow.

The freely available open source software package dagtools
[13] provides conversion tools from the trace format to the well
known Pcap (tcpdump) format. Neither data nor time resolution
are lost during conversion.

2.4. Packet flow regeneration

A flow regenerator consecutively reads packets and their corre-
sponding timestamps from a trace file and sends them out on a net-
work interface. In this process, there are several possible sources

of unwanted delay, depending on the operating system, hardware
resources, system load and the implementation of the regenerator.
Examples are disc access, timer resolution and the process sched-
uler in the operating system. To minimize these effects, one could
use a real-time operating system with higher timer resolution and
the ability to prioritize real-time processes. On the other hand, the
delays introduced may not be significant for the test results. For
instance, if the delays are much smaller than the decoder’s playout
buffer, they can most likely be ignored.

With this in mind, one of the purposes of this work was to
study the performance of a flow regeneration tool called tcpreplay
[14] running on a regular Linux operating system. Tcpreplay takes
a pcap file as input. Because of the real-time extensions of the
2.6 kernel, both 2.4 and 2.6 kernels were evaluated at different
loads. The 2.4 kernel is a pre-built debian sarge kernel image of
version 2.4.26. The 2.6 kernel used was version 2.6.8 with the
”Preemptible Kernel” option (CONFIG PREEMPT=y) set. This
option allows low-priority processes running in kernel mode to be
interrupted by time critical events [15]. The following hardware
configuration was used: 1 GB RAM, 3.0 GHz Pentium 4 CPU and
SATA 7200rpm 8MB cache disks.

2.5. Streaming media client

As shown in figure 1, the streaming media client receives, reor-
ganizes and buffer media data in a playout buffer. The decoder
fetches media data from the playout buffer, performs error detec-
tion, decoding and error concealment, so that the video frames or
audios sample are available for rendering by a display/sound de-
vice at presentation time. In our work we use the VLC player from
Videolan [16]. It uses the 3rd. party libraries livedotcom [17] and
libavcodec [18] for RTP streaming and MPEG-4 decoding, respec-
tively.

3. PRELIMINARY RESULTS

This section will present preliminary results from the process of
verifying the performance of the individual testbed components.

3.1. Test sequences

For our measurements we used the ”Standardized Evaluation Ma-
terial” (StEM) under license from Digital Cinema Initiatives (DCI)
[19]. StEM is a mini-movie available in 4K resolution (4096 by
1714 pixels), 24 frames per second and 16605 frames in total.
Only considering the video component of StEM, a lower resolution
version was made by cropping the 25 upper and 25 lower lines of
the original frames, followed by downscaling using bilinear down-
sampling to obtain a version with resolution 1024x416 pixels. This
clip was encoded using Envivio 4Coder 3.0 [6] to MPEG-4 Ad-
vanced Simple Profile at various constant bit rates (CBR), with a
intra period of 1 second (GOP size = 24) and encoder video buffer
size of 1 second.

3.2. Performance of the packet regenerator

To measure how accurately tcpreplay is able to regenerate packet
flows, we compared a 5 Mbps MPEG-4 network trace from 4-
Sight with several network traces from tcpreplay regenerating the
4-Sight trace. Similar measurements where performed with tcpre-
play running on both the Linux 2.4 and 2.6 kernel. Figure 4 (a)

Absolute difference in inter-arrival times (ms)
Bit rate Mean 99th percentile Max value
1 Mbps 0.261 0.953 2.10
5 Mbps 0.139 1.100 2.70

10 Mbps 0.077 0.914 1.80
15 Mbps 0.078 1.100 5.90
20 Mbps 0.073 1.200 24.5

Table 1. Absolute difference in packet inter-arrival times between
traces from 4-Sight and tcpreplay running on Linux 2.6 kernel, for
different bit rates.

shows the distribution of differences in packet inter-arrival times
between the traces from 4-Sight and tcpreplay running on the 2.4
kernel. Figure 4 (b) shows the corresponding distribution with
tcpreplay running on the 2.6 kernel. As these plots clearly indicate,
there is a considerable performance gain when using the Linux 2.6
kernel. In fact, considering the extreme values obtained from our
measurements, tcpreplay running on a Linux 2.6 kernel is able to
recreate the packet flow ten times more accurately than tcpreplay
running on the 2.4 kernel. While tcpreplay seems unable to recre-
ate the trace with a higher precision than ±20 ms on the 2.4 kernel,
these bounds are around ±2 ms on the 2.6 kernel.

Table 1 shows statistical characteristics of the absolute differ-
ences in packet inter-arrival times between traces from 4-Sight and
tcpreplay running on Linux 2.6 kernel, for five different MPEG-4
flows encoded at 1, 5, 10, 15 and 20 Mbps. We see that, e.g. for the
15 Mbps flow, 99 % of packets in the regenerated packet flow are
sent within ±1.1 ms of the intended sending time. The maximum
error increases for higher sending rates, e.g. the worst-case differ-
ence between actual and intended sending time for the 20 Mbps
packet flow is 24.5 ms. It should be noted however, that only 3
out of 1244686 packets were sent more than 3.3 ms later than in-
tended during this session. This phenomenon could be related to
higher priority system processes forcing tcpreplay to sleep longer
than intended [14]. Also, we see that the mean error in sending
time decreases as the bit rate increases. For higher bit rates and
an increasing number of packets per video frame, more and more
packets are sent immediately succeeding each other, without tcpre-
play having to sleep until the next calculated sending time. This
way, the relative frequency of idle periods is reduced, and the rate
of times at which tcpreplay has to wake up at the exact right mo-
ment is reduced.

4. SUMMARY AND DISCUSSIONS

We have presented a streaming media test bed for IP networks. Be-
sides a streaming server and a streaming media client, it consists of
an IP network emulator, a high-performance packet capture device
and a packet flow regenerator enabling repeatable performance
measurements of streaming media applications. Analyzing the de-
lay introduced by the packet regenerator in our measurements, we
observe that this may be limited to ±2.0 ms when tcpreplay is run-
ning on a Linux 2.6 kernel. Depending on the application at hand,
this uncertainty may or may not be significant. For instance, in-
teractive conversational applications require small playout buffers
(in the millisecond region), and thus this uncertainty introduced by
the packet regenerator is more significant than if the playout buffer

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Time (in seconds)

N
um

be
r

of
 o

ut
co

m
es

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Time (in seconds)

N
um

be
r

of
 o

ut
co

m
es

(c) (d)

Fig. 4. Distribution of difference in packet inter-arrival times comparing traces from 4-Sight and TCPReplay: (a) 5.0 Mbps StEM trace,
Linux 2.4 (b) 5.0 Mbps StEM trace, Linux 2.6 (Bin width equal to 0.5 ms for both traces.)

is large (in the region of several seconds), like in video-on-demand
or multicast streaming scenarios.

5. REFERENCES

[1] A. Perkis, Y. Abdejaoued, C. Christopoulos, T. Ebrahimi,
and J. F. Chicharo, “Universal multimedia access from wired
and wireless systems,” Circuits, Systems and Signal Process-
ing; Special issue on Multimedia Communications, vol. 20,
no. 3, pp. 387–402, 2001.

[2] “Video quality experts group (vqeg),” http://www.vqeg.org.

[3] D. Wu, Y.T Hou, W. Zhu, Y-Q Zhang, and J.M Peha,
“Streaming video over the internet: approaches and direc-
tions,” CSVT, vol. 11, no. 3, pp. 282–300, March 2001.

[4] Y. Wang and Q. Zhu, “Error control and concealment for
video communication: A review,” Proceedings of the IEEE,
vol. 86, no. 5, May 1998.

[5] “The Network Simulator ns-2,”
http://www.isi.edu/nsnam/ns/.

[6] “Envivio Inc.,” http://www.envivio.com/.

[7] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
“RTP: a transport protocol for real-time applications,” IETF,
Request for Comments: 1889, 1996.

[8] J. Chakareski, J. Apostolopoulos, S. Wee, W t. Tan, and
B. Girod, “R-d hint tracks for low-complexity r-d optimized
video streaming,” in Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME), Taipei, TW,
June 22–25, 2004.

[9] “Darwin,” http://apple.com/darwin.

[10] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An inte-
grated experimental environment for distributed systems and
networks,” in Proc. of the Fifth Symposium on Operating
Systems Design and Implementation, Boston, MA, Decem-
ber 2002, USENIX Association, pp. 255–270.

[11] “Empirix Packetsphere Network Emulator,”
http://www.empirix.com/.

[12] Mark Carson and Darrin Santay, “Nist net: a linux-based net-
work emulation tool,” SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 3, pp. 111–126, 2003.

[13] “Dagtools,” http://dag.cs.waikato.ac.nz/.

[14] “Tcpreplay,” http://tcpreplay.sourceforge.net.

[15] Robert Love, “Introducing the 2.6 kernel,” Linux J., vol.
2003, no. 109, pp. 2, 2003.

[16] “VLC media player,” http://www.videolan.org.

[17] “Live.com,” http://www.live.com/liveMedia/.

[18] “FFMPEG,” http://ffmpeg.sourceforge.net/.

[19] Digital Cinema Initiatives (DCI) and The American Society
of Cinematographers (ASC), “StEM mini-movie access pro-
cedyre, available at http://www.dcimovies.com/,” November
2004.

	Index
	ICME 2005

	Conference Info
	Welcome Messages
	Venue Access
	Committees
	Sponsors
	Tutorials

	Sessions
	Wednesday, 6 July, 2005
	WedAmOR1-Action recognition
	WedAmOR2-Video conference applications
	WedAmOR3-Video indexing
	WedAmOR4-Concealment & information recovery
	WedAmPO1-Posters on Human machine interface, interactio ...
	WedAmOR5-Face detection & tracking
	WedAmOR6-Video conferencing & interaction
	WedAmOR7-Audio & video segmentation
	WedAmOR8-Security
	WedPmOR1-Video streaming
	WedPmOR2-Music
	WedPmOR3-H.264
	WedPmSS1-E-meetings & e-learning
	WedPmPO1-Posters on Content analysis and compressed dom ...
	WedPmOR4-Wireless multimedia streaming
	WedPmOR5-Audio processing & analysis
	WedPmOR6-Authentication, protection & DRM
	WedPmSS2-E-meetings & e-learning -cntd-

	Thursday, 7 July, 2005
	ThuAmOR1-3D
	ThuAmOR2-Video classification
	ThuAmOR3-Watermarking 1
	ThuAmSS1-Emotion detection
	ThuAmNT1-Expo
	ThuAmOR4-Multidimensional signal processing
	ThuAmOR5-Feature extraction
	ThuAmOR6-Coding
	ThuAmSS2-Emotion detection -cntd-
	ThuPmOR1-Home video analysis
	ThuPmOR2-Interactive retrieval & annotation
	ThuPmOR3-Multimedia hardware and software design
	ThuPmSS1-Enterprise streaming
	ThuPmNT1-Expo -cntd-
	ThuPmOR4-Faces
	ThuPmOR5-Audio event detection
	ThuPmOR6-Multimedia systems analysis
	ThuPmOR7-Media conversion
	ThuPmPS2-Keynote Gopal Pingali, IBM Research, "Ele ...

	Friday, 8 July, 2005
	FriAmOR1-Annotation & ontologies
	FriAmOR2-Interfaces for multimedia
	FriAmOR3-Hardware
	FriAmOR4-Motion estimation
	FriAmPO1-Posters on Architectures, security, systems &a ...
	FriAmOR5-Machine learning
	FriAmOR6-Multimedia traffic management
	FriAmOR7-CBIR
	FriAmOR8-Compression
	FriPmOR1-Speech processing & analysis
	FriPmSS1-Sports
	FriPmOR2-Hypermedia & internet
	FriPmOR3-Transcoding
	FriPmPO1-Posters on Applications, authoring & editi ...
	FriPmOR4-Multimedia communication & networking
	FriPmOR5-Watermarking 2
	FriPmSS2-Sports -cntd-
	FriPmOR6-Shape retrieval

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	1 SIGNAL PROCESSING FOR MEDIA INTEGRATION
	1-CDOM Compressed Domain Processing
	1-CONV Media Conversion
	1-CPRS Media Compression
	1-ENCR Watermarking, Encryption and Data Hiding
	1-FILT Media Filtering and Enhancement
	1-JMEP Joint Media Processing
	1-PROC 3-D Processing
	1-SYNC Synchronization
	1-TCOD Transcoding of Compressed Multimedia Objects
	2 COMPONENTS AND TECHNOLOGIES FOR MULTIMEDIA SYSTEMS
	2-ALAR Algorithms/Architectures
	2-CIRC Low-Power Digital and Analog Circuits for Multim ...
	2-DISP Display Technology for Multimedia
	2-EXTN Signal and Data Processors for Multimedia Extens ...
	2-HDSO Hardware/Software Codesign
	2-PARA Parallel Architectures and Design Techniques
	2-PRES 3-D Presentation
	3 HUMAN-MACHINE INTERFACE AND INTERACTION
	3-AGNT Intelligent and Life-Like Agents
	3-CAMM Context-aware Multimedia
	3-CONT Presentation of Content in Multimedia Sessions
	3-DIAL Dialogue and Interactive Systems
	3-INTF User Interfaces
	3-MODA Multimodal Interaction
	3-QUAL Perceptual Quality and Human Factors
	3-VRAR Virtual Reality and Augmented Reality
	4 MULTIMEDIA CONTENT MANAGEMENT AND DELIVERY
	4-ANSY Content Analysis and Synthesis
	4-AUTH Authoring and Editing
	4-COMO Multimedia Content Modeling
	4-DESC Multimedia Content Descriptors
	4-DLIB Digital Libraries
	4-FEAT Feature Extraction and Representation
	4-KEEP Multimedia Indexing, Searching, Retrieving, Quer ...
	4-KNOW Content Recognition and Understanding
	4-MINI Multimedia Mining
	4-MMDB Multimedia Databases
	4-PERS Personalized Multimedia
	4-SEGM Image and Video Segmentation for Interactive Ser ...
	4-STRY Video Summaries and Storyboards
	5 MULTIMEDIA COMMUNICATION AND NETWORKING
	5-APDM Multimedia Authentication, Content Protection an ...
	5-BEEP Multimedia Traffic Management
	5-HIDE Error Concealment and Information Recovery
	5-QOSV Quality of Service
	5-SEND Transport Protocols
	5-STRM Multimedia Streaming
	5-WRLS Wireless Multimedia Communication
	6 SYSTEM INTEGRATION
	6-MMMR Multimedia Middleware
	6-OPTI System Optimization and Packaging
	6-SYSS Operating System Support for Multimedia
	6-WORK System Performance
	7 APPLICATIONS
	7-AMBI Ambient Intelligence
	7-CONF Videoconferencing and Collaboration Environment
	7-CONS Consumer Electronics and Entertainment
	7-EDUC Education and e-learning
	7-SECR Security
	7-STAN Multimedia Standards
	7-WEBS WWW, Hypermedia and Internet, Internet II

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Odd Inge Hillestad
	Bjørnar Libæk
	Andrew Perkis

