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ABSTRACT 
 
This paper proposes employing a graph-theoretic 
approach to estimate the region correspondence between 
two images. We represent each image as an attributed 
undirected graph and transform the image matching 
problem into an inexact graph matching problem. We 
formulate the estimation of the soft matching matrix 
between two graphs as a quadratic programming problem, 
and apply KKT (Karush-Kuhn-Tucker) conditions and the 
modified simplex algorithm to solve the constrained 
optimization problem. With the soft matching matrix, we 
are capable to integrate both the region correspondence 
and low-level visual features into an effective matching 
measurement for image matching. Experiments have been 
conducted on image retrieval to show the effectiveness of 
the proposed estimation algorithm. 

 

1. INTRODUCTION 
 
Region-based approaches have become an indispensable 
issue in content-based image retrieval (CBIR). 
Representing images in region level captures not only 
regions’ local variations but also their spatial 
organizations. Study of distance measurements and 
learning strategies on region-based representation have 
been proven greatly improving the performance for image 
matching and relevance feedback [1,2,4,7,8]. 

Since image distance is often defined as a 
combination of region distances, estimation of region 
correspondence becomes a prerequisite for a region-based 
image matching problem. Correspondence estimation for 
CBIR is expected to have the following three properties. 
First, both the region attributes and the adjacent 
relationship should be incorporated into the estimation 
process.  Second, the estimation should deal with many-
to-many mapping issues in case of imperfect segmentation. 
Consequently, the matching confidence between each pair 
of matched regions had better be determined with a soft 
decision. Finally, the estimated region correspondence 

should be easily incorporated into CBIR and the 
subsequent relevance feedback steps. 

IRM [1] develops a greedy algorithm, MSHP (most 
similar highest priority) algorithm, to find out the region 
correspondence in terms of region attributes and region 
weights. EMD flow [2] adopts a similar formulation to 
IRM but solves the constrained optimization problem 
using a linear programming approach. Ko et. al [4] use 
region centroids as one of the region attributes and apply 
Hausdorff distance to measure the distance between two 
sets of regions. However, these methods [1,2,4] takes no 
account of adjacent relationship between regions into their 
estimation. 

Graph-theoretic approaches have been widely used in 
correspondence estimation [6-10]. To incorporate both 
region attributes and adjacent relationship into estimation, 
image is usually represented as an attributed graph. Hence, 
the image matching problem is transformed into an 
attributed graph matching problem. Our work [7,8] 
employs maximal principal [9] to find out the matching 
matrix between two images. The main limitation in [7,8] 
is that the estimated matching matrix is restricted to be an 
orthogonal matrix and which may contain negative 
elements. Hence, we heuristically select the largest 
element in each row as the corresponding element and 
allow each node in one graph to match only one node in 
the other graph. We refer to this method as the hard 
matching method, which is incapable of mapping one 
region to multiple regions. Baeza-Yates et al. [5] also 
represent images as attributed graphs and adopt graph edit 
distance to calculate the image distance. The distance is 
measured by the cost of transforming from one graph to 
the other. However, this work produces no explicit 
correspondence result for further application in the 
relevance feedback steps. 

In this paper, we aim to employ a graph-theoretic 
approach to find out the soft matching matrix between two 
images, i.e. each pair of regions between two images has a 
confidence value to reflect the importance of the mapping. 
Our goal is to deal with many-to-many mapping issues 
and then define the image distance based on the estimated 
soft matching matrix. 
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The rest of this paper is organized as follows. Section 
2 formulates the graph-theoretic image matching as a 
quadratic programming problem. Section 3 applies KKT 
condition and a modified simplex method to find out the 
optimal soft matching matrix. In section 4, we define the 
image distance in terms of the estimated region 
correspondence as well as the region attributes. Several 
experiments and comparisons are shown in section 5. 
Finally, section 6 summarizes our work. 

 
 

2. GRAPH-THEORETIC IMAGE MATCHING 
 
In the image matching problem, we use a graph (the data 
graph) to represent an image as ),,,( DfDDD EVG = , where 

DV  is the set of nodes corresponding to regions, and DE  is 
the set of edges. An edge ( ) Dba Exx ∈,  exists if the two 
regions ax , Db Vx ∈  are spatially adjacent. The term f  
indicates the node attribute vector, and D  is the edge 
attribute adjacency matrix. Similarly, we refer to another 
image in the matching problem as the model graph 

),,,( MgMMM EVG = . 
When the data graph is matched to the model graph, 

we assume that the node attribute vector g  of the model 
graph is the permutation of f  with additive noise [10], i.e. 

nPfg 1ε+= ,                                   (1) 
where P  is a 

DM VV ×  permutation matrix, and  1ε  is the 
noise magnitude. The elements of the noise vector n  are 
assumed to be drawn from a zero-mean and unit-variance 
Gaussian distribution. Similarly, we assume that the two 
adjacency matrices are related by 

NPDPM 2ε+= T .                                  (2) 
The goal of our image matching approach is to find 

out the optimal 
MD VV ×  soft matching matrix Ŝ  that 

maximizes the probability 
( )SS

S
,|maxargˆ

DM GGP= .                             (3) 

Each element 
αas  in S  represents the confidence that the 

node Da Vx ∈  matches MVy ∈α . If we restrict elements of 

Ŝ  to be binary and only allow one-to-one mapping, then 
TŜ  is the same as the permutation matrix P . Hence, in 

this work, TŜ  can be treated as a generalization of the 
permutation matrix. 

In (3), the probability ),|( SDM GGP  is factorized 
according to the definition of conditional probability 

( )
( ) ( ).,,,|,,|                       
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SDgfMSDfg
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=        (4) 

Using the assumption defined in (1), the probability of the 
node attribute vector g  is independent of the edge 

attribute adjacency matrix D . From (1), each element in 
g  is defined by 

1εαα += ∑ ∈ DVa aa fsg .  Hence, we define  
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For the second term ( )SDgfM ,,,|P  in (4), we first assume 
that elements in the edge attribute adjacency matrix M  
are statistically independent, given f , g , D , and S . 
Hence we have 

( ) ( )∏∏
∈ ∈

=
M MV V

MPP
α β

αβ SDgfSDgfM ,,,|,,,| .              (6) 

Furthermore, by the assumption defined in (2) and from 
∑ ∑∈ ∈

=
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, we define 
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By substituting (4), (5), (6), and (7) into (3) and defining 
( )ααφ gfd aa ,= , ( )gf ,|, αββαψ MDd abba = ,                (8) 

we have 
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subject to the constraints  
1≤∑

∈ DVa
as α

 for MV∈α ;                                    (10) 

1≤∑
∈ MV

as
α

α
 for DVa∈ ;                                     (11) 

( )MD
Va V

a VVs
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α
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0≥αas  for MV∈α and DVa∈ .                       (13) 
The constraints (10-12) are defined based on the 
observation that the numbers of nodes in the data graph 
and in the model graph are usually different. Note that, the 
constraint defined in (12) will be removed by including 
slack variables in the original problem. Suppose 

MD VV > , 

then we have 1
1

=∑ =

DV

a as α
, 1

1
≤∑ =

MV
as

α α
, and (12) will hold 

accordingly. If we include the slack variables 0≥aζ  in 
(11), we can transform the inequality constraint defined in 
(11) into the equality constraints 1

1
=+∑ = a

V
a

M s ζ
α α

 and no 

longer need to define the constraint (12). In the following 
derivation, we will assume 

MD VV > . The case for 

MD VV <  can be similarly derived. 

Note that in (9), if we drop the term ( )SDgfM ,,,|P , 
then this formulation turns out to be the same as the EMD 



flow method [2]. Thus, EMD flow method can be treated 
as a special case of our formulation. 
 

3. OPTIMAL SOLUTION FOR THE SOFT 
MATCHING MATRIX  

 
In (9), the objective function includes the term 

βα ba ss  and 

thus becomes a quadratic programming problem. In order 
to derive the optimal matching matrix S , we follow the 
procedure in [11] to solve (9). Let αµ  ( MV∈α ), aν  
( DVa∈ ) represent the corresponding dual variables of (10) 
and (11), respectively. The KKT (Karush-Kuhn-Tucker) 
conditions of (9) are as follows. 
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0≥αas , 0≥αµ , 0≥aν , 0≥aζ .                            (20) 
We introduce nonnegative slack variables 0≥αγ a  to 
convert (14) into equalities: 
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Furthermore, we have the complementarity constraint 
0=∑ ∑

∈ ∈D MVa V
aa rs

α
αα

,                                (22) 

which ensures that only one of the two variables in 
),( αα aa rs  can be nonzero. 

In order to determine the initial basic feasible 
solution, we introduce artificial variables αp , aq , and αaz  
to revise the problem. The revised constraints for (16), 
(17), and (21) are as follows: 
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Finally, we have the following linear programming 
problem: 

Minimize     ∑∑∑∑
=== =
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subject to     (23), (24), (25)  
and 0,,,,,,, ≥aaaaaa qpzs ααααα γζνµ .     (27) 

Using phase 1 of the two-phase method [11], we 
iteratively derive the optimal solution for all the elements 

αas  in the matching matrix S . The optimal solution 
achieves when all the artificial variables are zero, 
according to the restricted entry rule [11]. 

In summary, by assuming that the nodes attributes 
and the edge attribute adjacency matrix of the model 
graph are permutations of that of the data graph, we 
transform the inexact graph matching problem (3) into a 
quadratic programming problem (9). The optimal soft 
matching matrix can be derived by the KKT conditions 
and the modified simplex method. 
 

4. IMAGE REPRESENTATION AND DISTANCE 
MEASUREMENT 

 
This section elaborates our distance measurement for node 
attributes and edge attributes in (8). Although in section 2, 
we mainly deal with nodes with single attribute, extending 
our formulation to be with multi-valued node attributes is 
very intuitive. Let af  and αg represent feature vectors of 
nodes ax  and αy  respectively, we define 

( ) 2

2
, αααφ gfgfd aaa −== ,                           (28) 

where 
2
⋅  denotes the Euclidean distance. 

Next, according to the edge consistency between two 
graphs, we define  

βααββα φφψ baabba MD= .                                  (29) 

Two edges are said to be consistent if both Dba Exx ∈),( , 

MEyy ∈),( βα
. If two edges are inconsistent, we define the 

distance as the product of node attributes’ distance. 
Based on the estimated soft matching matrix, we then 

define the image distance as 
( ) ∑ ∑

∈ ∈

=
D MVa V

aaMD sGGd
α

ααφ, .                    (30) 

 
5. EXPERIMENTAL RESULTS 

 
We select 30 categories from the Corel photo gallery as 
our database. Each category contains 100 images. We first 
perform the mean-shift based approach [12] to segment 
images into regions and extract four low-level features 
from each region. We average the colors of pixels in 

*** vuL  space to obtain color features. For texture features, 
we compute the normalized co-occurrence matrix and 
then extract 5 numerical features, including energy, 
entropy, contrast, homogeneity, and correlation. For shape 
features, we measure 7 moment variants by representing 



the luminance variation along the location change as a 
probability distribution. The coordinates of the region 
center is extracted as spatial features. 

Images in the same category are defined as relevant. 
We select 15 categories from our database as test queries 
to perform the experiment. Since our formulation can be 
regarded as a generalization of EMD flow [2], and EMD 
flow is also a soft matching approach, we compare our 
work with EMD flow to show that employing region 
adjacency indeed improves the accuracy of region 
correspondence estimation. We perform experiments over 
all 1500 test queries and use the averaged precision-recall 
curve to measure the retrieval performance. Figure 1 
shows that our method outperforms EMD flow. 
 

6. CONCLUSIONS 
 
In this paper, we develop a graph-theoretic approach for 
the image matching problem. The region correspondence 
is represented by a matching matrix. Our framework 
incorporates adjacent relationship between regions as a 
weight to penalize the region distance. The first 
contribution of this work is to formulate the estimation of 
soft matching matrix into an inexact graph matching 
problem. The second contribution of this work is to solve 
the constrained optimization problem for inexact graph 
matching using a quadratic programming approach. The 
experimental results demonstrate that the proposed 
estimation method indeed achieve satisfactory result for 
image retrieval.  
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