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Abstract

In this paper, we aim at modeling video sequences that
exhibit temporal appearance variation. The dynamic
texture model proposed in [6] is effective to model sim-
ple dynamic scenes. However, because of its over-
simplified appearance model and under-constrained dy-
namics model, the visual quality of its synthesized video
sequences is often not satisfactory. This leads to our
new model. We parameterize the nonlinear image man-
ifold using mixtures of probabilistic principal compo-
nent analyzers. We then align coefficients from differ-
ent mixture components in a global coordinate system,
and model the image dynamics in the global coordinate
using an autoregressive process. The experimental re-
sults show that our method is capable of capturing com-
plex temporal appearance variation and offers improved
synthesis results over previous works.

1. Introduction

Examples of dynamic textures/scenes include flowing
river, boiling water, waving trees, shifting smoke, etc.
There are three main approaches in literature to model
dynamic textures. First, one can directly extend meth-
ods of static 2D texture synthesis, e.g. [12]. These
methods ignore the underlying texture dynamics. Also,
they cannot synthesize dynamic scenes with more than
one texture, or non-texture objects. Second, one can
use a spatio-temporal model at the pixel level to rep-
resent the relationships between a pixel and its neigh-
borhoods [8]. Such pixel-level dynamical models ex-
perience difficulties in selecting the appropriate neigh-
borhood size and topology. A good model of this ap-
proach also requires a large number of model parame-
ters. Most importantly, such a model is not capable of
synthesizing rotation-like motion patterns. Third, one
can use a dynamical model at the image level. For ex-
ample, Soatto et al [6] model dynamic textures/scenes
using a linear dynamical system (LDS), which repre-
sents each image as a point in a linear subspace (e.g.
PCA) and uses an autoregressive model to learn the

dynamics of the trajectory in the image subspace as

{
xt = Axt−1 + vt, vt ∼ N (0, Q)
yt = Cxt + wt, wt ∼ N (0, R) (1)

where y is the observed image, x is the hidden state
variable, C is the output matrix mapping observa-
tions to state variables, A is the transition matrix
of AR process, and v and w are zero-mean Guassian
noise sources. Compared to the pixel-level dynami-
cal model, this approach requires much fewer model
parameters and has a greater capability of capturing
different motion types. Furthermore, Yuan et al [13]
analyze the stability of the LDS through its pole place-
ment and propose a dynamical model with feedback
control, which improves synthesis results.

However, by using either [6] or [13], the visual qual-
ity of synthesized video sequences is not satisfactory
when the scenes contain large temporal appearance
variation and/or shape variation. In [13], they address
the problem of under-constrained dynamics in [6]. But
one key to modeling complex texture motion is a bet-
ter appearance model. As will be shown in our exper-
iments, a linear dimensionality reduction scheme such
as PCA is too simple to capture complex appearance
changes.

In this paper, we address problems in both appear-
ance and dynamics models. In appearance model, we
propose to use a mixture of PCAs to characterize image
manifolds which is usually nonlinear for images with
large appearance variation. Using a mixture model for
appearance manifold seems intuitive, but then deriv-
ing a dynamics model could be very difficult. This is
because different mixture components have their own
coordinate systems based on their eigenvectors span-
ning the subspace, but dynamics models have to be
operated on a single coordinate system of the manifold
1. Therefore, we adopt a global coordination model,
which provides a mapping between coordinates of dif-
ferent mixture components and the global manifold co-
ordinate, and extend it to a dynamic model.

1A switching LDS [1] does not operate on a single coordinate
system, but it does not ensure appearance continuity.
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2. Global Parameterization of
Appearance Manifold

There are generally two categories of nonlinear dimen-
sionality reduction schemes: (1) locally linear map-
ping [11] and (2) nonlinear embedding [3, 10]. A mix-
ture of locally linear models offers a two-way mapping,
but lacks a coherent global coordinate system. Non-
linear embedding offers a global coordinate, but lacks
the mapping for the inference of an observation from
a global coordinate. Therefore, we map a mixture of
locally linear models into a new coordinate system to
achieve ideal manifold mapping for modeling dynamic
textures.
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Figure 1: Mappings of nonlinear dimensionality reduc-
tion schemes.

2.1. Global Coordination Model

Roweis [4] propose a global coordination model that
maps a mixture of locally linear models into a global
coordinate system (Figure 2). Given a local model s
and its local coordinate zs, the mappings from zs to ob-
servation y and to global coordinate g are both linear.
And since s and zs are unknown, mapping between y
and g is nonlinear through the inference.
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Figure 2: The global coordination model.

To learn this model, we use a post-coordination
method proposed in [9]. Given a learned mixture of
S PCA models, for each data point yn, the s-th PCA
has an d dimensional internal coordinate zns for yn and
an associated responsibility rns, where rns = P (yn|s)
and

∑
s rns = 1. We assume there is a linear mapping

between local representations and global coordinates,
with linear projection Ls and mean l0s . The global co-
ordinates gn is defined as the weighted sum of the pro-

jections by each local model:

gn =
∑

s

rnsgns =
∑

s

rns(Lszns + l0s)

=
∑

s

d∑

i=0

rnsz
i
nsl

i
s =

∑

j

unj lj ,

(2)

G = UL j = j(i, s), unj = rnsz
i
ns, lj = lis (3)

where lis is the i-th column of Ls, zi
ns is the i-th entry

of zns, and z0
ns = 1. After vectorizing index pair (i, s)

into a single index j and defining matrix U as unj and
j-th row of L as lj = lis, we have a linear equation
system (3) with fixed U and unknown L.

To determine L, we need to minimize a cost func-
tion that incorporates the topological constraints that
govern gn. Hence, the cost function is selected based
on LLE’s idea [3]: preserving the same neighborhood
structure between the high dimensional input space
and the low dimensional embedding. For each data
point yn, we denote its nearest neighbors as ym (m ∈
Nn) and minimize

E(Y, W ) =
∑

n

‖ yn −
∑

m∈Nn

wnmym ‖2 (4)

with respect to W subject to
∑

m∈Nn
wnm = 1. The

weights wnm are unique and can be solved by con-
strained least squares. These weights represent the lo-
cally linear relationships between yn and its neighbors.
Accordingly, we define the same cost function

E(G,W ) =
∑

n

‖ gn −
∑

m∈Nn

wnmgm ‖2

= trace(GT (I −WT )(I −W )G)

= trace(LT AL)

(5)

with respect to G, where A = UT (I −WT )(I −W )U .
Since E is invariant to translations and rotations of G,
and E scales as G is scaled, we define the following two
constraints

1
N

∑
n

gn =
1
N

−→
1 T G =

1
N

−→
1 T UL = 0 (6)

and
1
N

∑
n

gngT
n =

1
N

GT G = LT BL = Id, (7)

where B = 1
N UT U . Now that the cost function (5) and

the constraint (7) are both quadratic, we can determine
the optimal L, without local minima problems, by solv-
ing generalized eigenvalue system Aυ = λBυ subject
to 1

N

−→
1 T UL = 0. The solution for L is the matrix with

its columns formed by the second to (d+1)-th smallest
generalized eigenvectors.
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3. Globally Coordinated Dy-
namic Network

Now that we have the nonlinear mapping between
images and their low dimensional global coordinates,
we can then model the image dynamics in the low
dimensional space (global coordinates). Here we
adopt the Markovian assumption, P (gt|gt−1, . . . , g1) =
P (gt|gt−1). With this property, our dynamic texture
model is a generative model depicted in Figure 3.

Yt-1 Yt+1Yt

Gt+1Gt-1
Gt

,Z t+1St+1,Z t-1St-1 ,Z tSt

Figure 3: Our generative model for dynamic textures.

3.1. Autoregressive Process

We can treat the image dynamics as a realization of a
stochastic process estimated by an autoregressive (AR)
model. The AR model is used based on the assumption
that each term in the time series depends linearly on
several previous terms [2]. Therefore, the AR model
of order p, denoted as AR(p), for dynamic textures is
expressed as

gt =
p∑

i=1

Aigt−i + vt, (8)

where the matrices Ai are the coefficient matrices of the
AR(p) model, and vt is an uncorrelated random noise.
To select the optimum order of the AR model, we adopt
Schwarz’s Bayesian Criterion [5] which chooses the or-
der of the model so as to minimize the forecast mean-
squared error.

As Yuan et al [13] point out, the LDS based method
produces good-quality dynamic textures only if it is an
oscillatory system. That is, for the AR(1) model, for
all eigenvalues σi of A, |σi| ≤ 1 and there exists j such
that |σj | = 1. Otherwise, the synthesized dynamic tex-
tures will gradually decay or diverge. To overcome this
problem, they incorporate feedback control that results
in a non-causal system. Therefore, they first need to
generate reference states, and then iteratively smooth
out the discontinuity. Although using this method one
will obtain better results, it does not predict new states
on the fly, which is a desirable feature for many real-
world applications (e.g. video games).

To prevent gt generated by AR model from drifting
away, we sample a certain number of vt and pick the one

that pulls gt toward the manifold. Our experimental
results show that this method ensures a stable dynamic
texture in a long synthesized image sequence.

4. Experimental Results

The image sequences used in our experiments are taken
from MIT temporal texture database [7]. Most image
sequences in the database have resolutions of 170 by
115 and contain 120 to 150 frames. We train mixture
models with the method proposed by Tipping [11].

4.1. Dynamic Texture Reconstruction

For the application in video compression, our mixture
of PCA method always yields less reconstruction errors
than the single PCA method in different dynamic tex-
ture sequences. While the difference of reconstruction
errors between two methods are usually about 5%, the
differences of the visual quality of reconstructed images
are always very obvious (See Figure 4).

Figure 4: The images on the top row are from the
original sequence. The middle row is reconstructed by
single PCA method. The bottom row is reconstructed
by our method with a mixture of three PCA models.

4.2. Dynamic Texture Synthesis

For the application in synthesis, we demonstrate a river
sequence that would allow temporally continuous and
infinitely synthesized images. Note that some original
sequences do not show repeated patterns, so it is im-
possible to generate infinite synthesized sequences.

Figure 5 shows the synthesis results by the single
PCA method and our proposed method. The images
are corresponding frames selected from 200 synthesized
images. As can be seen, the single PCA method yields
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a decreasing quality as the synthesized sequence be-
comes longer. Our method generates a much improved
result. Our synthesis process is performed in real-time.

5. Conclusion

In this paper, we model dynamic textures with mix-
tures of locally linear subspaces. We adopt a global co-
ordination model that provides a coherent coordinate
mapping between images and their low-dimensional ap-
pearance embedding. We then model the texture dy-
namics on the appearance embedding. Compared to
the relevant works, our method yields less reconstruc-
tion error and generates higher-quality dynamic tex-
tures.
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