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ABSTRACT 

 
We present EXTENT, an image annotation system that 
combines the context and content information to annotate 
images with metadata that cannot be reliably inferred 
from either the context or the content alone.   EXTENT 
first applies contextual information for restricting the 
search scope in an image database and reducing the 
complexity of ensuing content analysis. It can then afford 
to use more expensive (hence more robust) algorithms for 
performing content analysis within the restricted 
database scope.  Our experiments show that effectively 
combining content with context information can infer 
metadata with high accuracy. 
 

1. INTRODUCTION 
 
Recognizing objects (landmarks or people) in a photo 
remains to be a very challenging computer-vision 
research problem. However, with available contextual 
information, such as time, location, and a person’s social 
network, recognizing objects among a much limited set of 
candidates is not as daunting a task. For example, given 
the location information that a photograph was taken at 
downtown Santa Barbara, the landmarks observed in the 
photo are likely to be certain famous architectures in the 
area. Given the fact that a photo depicts a birthday party 
of a person, the attendees are most likely to be his/her 
friends and family. With candidate objects being limited, 
not only does matching become easier, but also the 
matching time becomes shorter. Hence, we can afford to 
employ more elaborate matching techniques to improve 
accuracy. 

 
Recently, technology advance in mobile phones 

and digital cameras has created rapid growth in on-line 
picture sharing.  Most digital cameras today assign a 
photo a meaningless number as its filename. To help 
users better organize their photos, it would be desirable to 
provide useful metadata such as time (when), people 
(who), location (where), landmarks (what), and event 
(inferred based on when, who, where, and what). 
Providing the when and where information is relatively 
straightforward, as all cameras provide time information, 
and most picture phones can infer (rough) location from 
GPS or CellID information. However, providing the what 

and who metadata must rely on content analysis.  
Therefore, we had proposed EXTENT [1]: a combined 
context and content analysis system for annotating 
images with metadata. 

 
In this work, we focus on landmark recognition 

(one important aspect of the what metadata). Given the 
(rough) location where a photo was taken, EXTENT 
generates a list of landmarks that are likely to be in the 
photo. EXTENT then extracts scale-, illumination-, and 
viewpoint-invariant features from the photo to match with 
those of the database images of the landmarks. The major 
research challenge lies in that the matching must be 
insensitive to variation in time of the day and viewing 
direction. In other words, a landmark taken under 
different lighting conditions and from different viewing 
angles should be correctly recognized as the same. 

 
Some recent works [2][8][9][10] enable digital 

images to be annotated with the metadata of spatial 
context. Nevertheless, these methods suffer from some 
drawbacks. First, in [2][8][10], GPS devices are used to 
infer the location where a photo is taken. However, the 
objects in a photo may be far away from the camera [11], 
not at the GPS coordinate. For instance, one can take a 
picture of the Bay Bridge from many different locations 
in the cities of Berkeley, Oakland, and San Francisco. 
The GPS information often cannot definitively identify 
landmarks in a photo.  Furthermore, a landmark in a 
photo may be occluded and can hence be deemed not 
important. For instance, a ship may occlude a bridge; a 
person may occlude a building, etc. Also, a person can be 
inside or outside of a landmark. Therefore, a robust image 
annotation system must perform content analysis to 
precisely name the landmarks. 

 
  The remainder of this paper is organized as 
follows.  In section 2, related work on image context 
inference is reviewed.  In section 3, we propose 
EXTENT. In section 4, selected experimental results are 
reported.  In section 5, we provide a concluding remark.  
 

2. RELATED WORK 
 
We have discussed several context–based image 
annotation systems in Section 1 to motivate this work. 
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Here, we briefly review some representative work in 
content-based object recognition. 
 
To compare and match objects in images, template 
matching is a widely adopted technique. Nevertheless, 
template matching cannot deal with occlusion or scaling 
very well. It is also very sensitive to changes in 
illumination. To remedy these problems, Lowe [6][7] 
proposed one of the most robust local descriptors: Scale 
Invariant Feature Transform (or SIFT), which extracts 
distinctive and invariant local features.  SIFT [6] consists 
of four processing stages: 1. scale-space extrema 
detection, 2. keypoint localization, 3. orientation 
assignment, and 4. keypoint description. (Details are 
presented in Section 3.2.)  Features generated by SIFT 
have been shown to be robust in matching in the presence 
of affine distortion, change of 3D viewpoint, addition of 
noise, and variation in illumination [6]. 
  

Ke and Sukthankar recently proposed a modified 
version of SIFT, called the PCA-SIFT [5].  PCA-SIFT 
uses the Principle Components Analysis (PCA) to 
normalize the gradient patch based on the output of SIFT.  
The result is shown to be robust to image deformations 
[4]. 

 
Despite the success of SIFT and PCA-SIFT, 

these techniques can break down when the number of 
candidate objects to be matched is large.  EXTENT 
successfully brings the candidate object set down to a 
small, manageable subset, and thereby substantially 
improves the matching accuracy and efficiency.  
 
 

3. THE EXTENT SYSTEM 
 
While the full architecture of EXTENT is detailed in [1], 
this section presents the part for landmark annotating.  
We assume that photos were taken with temporal (when) 
and spatial (where) information. The EXTENT system 
uses these contexts to first choose possible landmark 
candidates, and then uses the content of the photos to 
create invariant features for matching against a database 
of landmarks.   

 
Two important issues of landmark recognition in 

the EXTENT system are lighting and viewing-angle 
variation.  Since the photos of a landmark can be taken in 
many different times and from many different 
perspectives, EXTENT uses SIFT’s image features, 
which are insensitive to lighting variations and changes in 
viewing directions.  Moreover, to incorporate the context 
knowledge into the recognition process, EXTENT applies 
an intelligent coarse-to-fine search: First context 

information is analyzed for reducing the search range in 
the landmark database; then the feature extraction and 
matching algorithms are applied to locate suitable 
matches, and finally the context information is referenced 
again to filter those ambiguous matches. The procedure of 
EXTENT is discussed below. 
 
3.1. Generating the list of candidate landmarks 
 
The candidate landmarks are selected from the database 
of landmarks in two ways. First, they are chosen based on 
the spatial metadata, such as GPS or CellID information.  
For example, if the CellID indicates that a photo was 
taken on the Stanford campus, the candidate landmarks, if 
one exists in the photo, can be the Hoover Tower, the 
Memorial Church, and several other landmarks on the 
campus. The second method is to review the previously 
annotated photos.  If some previous photos were taken at 
about the same time as the current photo, the landmark 
information of the previous photos is also used to choose 
the candidate landmarks.  For example, if the landmark in 
photos taken a couple minutes ago was identified as the 
Gates building, we add the landmarks near the Gates 
building to the candidate list. 
 

The second method can be treated as a 
complementary method for the first one. That is, if at 
some time the CellID information is not present or 
ambiguous, we can still infer the spatial information by 
using previous spatial and temporal information.  (We do 
not use the second method in our experiments.) 
 
3.2 Constructing robust features 
 
In order to compensate for the lighting variation, view-
angle change and image noise, we apply a robust feature 
extraction methods, the SIFT algorithm [6], for 
constructing invariant features from photos.  The SIFT 
features are created by the following four steps:  

 
1. Potentially interesting image features, called 

keypoints in the SIFT algorithm, are identified in the 
scale-space using the difference-of-Gaussian images. 
The detected feature points are invariant to scale and 
orientation, because the search area covers all image 
scales, and the difference-of-Gaussian images 
produce stable image features against image rotation. 

2. The detailed location of each keypoint is calculated 
by fitting a 3D quadratic model to the neighboring 
regions of the keypoints.  For extracting stable 
features, some tests are performed to eliminate those 
points that lie on an edge with poor localization. 

3. To achieve orientation independent results, the 
principal gradient direction is used to rotate and align 



the dominant direction of each keypoint.  An 
orientation histogram is then computed using image 
gradient information in the neighboring regions of 
the keypoints. 

4. Finally, a local image descriptor is formed, by 
collecting the normalized gradient information 
around the keypoints.  The keypoint descriptors are 
designed to avoid boundary effects, and they are 
composed of 128-element feature vectors. 

 
The SIFT algorithm extracts dense features that 

are distinctive and invariant, and hence, they are ideal for 
landmark detection and matching in a database [6].  
Furthermore, the algorithm can be applied efficiently by 
processing a landmark database off line.   
 
3.3. Matching features in a landmark database 
 
For each detected keypoint in a query photo, we perform 
a nearest-neighbor search to locate similar features in a 
landmark database. Since there is no known algorithm 
that can identify the exact neighbors of points efficiently 
in a high dimensional feature space, we follow the 
approximate method in [6], the best-bin-first algorithm, to 
match the keypoints in the database.  Then we cluster the 
keypoints from the same photos in the database to 
determine the possible landmarks in the query photo.   
 
3.4. Solving the ambiguity of matching 
 
The previous step may produce more than one candidate 
landmarks.  We can make the final decision by utilizing 
the context information again. In step 1, we use the 
context information to choose some candidate places.  In 
this step, we just need one solution.  Therefore, we 
choose the landmark that is closest to the CellID area, 
GPS position, or the previous recognized landmarks. 

 
We have discussed the four main steps of the 

EXTENT system.  The first and last steps use the contexts 
of photos, including spatial and temporal contexts, for 
narrowing down the searching ranges.  The second and 
third steps use the photo content to perform a robust 
database search.  Combing context and content 
information, EXTENT is a much more robust system 
compared to those use only context or content.  
 

4. EXPERIMENTAL RESULTS 
 
4.1. Test-bed 
 
We have used two datasets to evaluate EXTENT. The 
first one, referred henceforth as the Towers dataset, was 
created by collecting 1,000 architecture images from 

various websites on the Internet. This set contained 50 
tower images: 5 images each for 10 different landmark 
towers (such as the Eiffel Tower, Tower of Pisa etc).  The 
rest were other landmarks from all over the world. These 
images were taken at different times, by different people, 
and under varying lighting conditions and viewing 
angles. They were taken at various resolutions and aspect 
ratios (ranging from 180×317 to 1384×1752). All of them 
were converted to the JPEG format before performing 
feature extraction. We used this dataset to evaluate the 
effectiveness of SIFT feature extraction for landmark 
detection. 
  
The second dataset (referred hereafter as the Stanford 
dataset) was obtained from Mor Naaman [8]. The dataset 
was constructed by collecting photographs taken by 
visitors to the Stanford Visitor Center. All photographs 
were taken in the Stanford campus and were annotated 
with GPS information. From this dataset, we used a 
subset containing about 1,000 images. To evaluate the 
EXTENT system, we selected photographs with GPS 
coordinates around the Memorial Church and Hoover 
Tower (two important landmarks on the Stanford 
campus). All images were rescaled to 320×240, before 
performing SIFT feature extraction. Sample images from 
this dataset are shown in Figure 1. 

 
Also, we kept a separate set of sample images 

for each landmark. These images were used as queries to 
determine the presence of a landmark.  

 
  

Figure 1. Stanford Dataset Samples  
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Table 1. Matching Accuracy for the Towers dataset 

Tower A B C D E F 
Accuracy (%) 80 80 40 100 60 100 
Tower G H I J All 
Accuracy (%) 100 60 100 60 78 
. Results 
e used the Towers dataset to evaluate the effectiveness 
the SIFT feature extraction for recognizing landmarks. 
is experiment was performed without using any 
ntextual information. We used the 50 tower images in 
s experiments and performed leave-one-out cross 
lidation. So each image was queried against the 



remaining 49 images and a label was assigned to the 
query image based on the best match found in the dataset 
of the remaining 49, and compared against the ground 
truth. The average annotation accuracy achieved for each 
of the towers is listed in Table 1. The average annotation 
accuracy is 78%.  Notice that we only have four sample 
images for every tower to compare with.  We believe that 
with more representations (more photos of a landmark 
taken from different angles and lighting conditions), the 
result can be improved.  The results show that SIFT is a 
promising feature-extraction method. SIFT’s major 
drawback is its high comparison cost. In our second 
experiment, we used contextual information to improve 
both search efficiency and accuracy. 

Hoover Tower Photos
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Figure 2. Hoover Tower Annotation Accuracy 

 
  

The second set of experiments used the Stanford 
dataset. First, we used spatial context information to 
narrow the pool of candidate landmarks. (Again, GPS 
coordinates of each image can tell us what landmarks are 
in the vicinity of the imaging location.) Each image in the 
dataset was individually processed and matched with 
sample images that contain candidate landmarks.  We 
used a distance threshold to separate likely matches from 
non-matches. If the distance (computed using the SIFT 
features) between the query image and a landmark sample 
was within the threshold, the landmark would be a 
possible match. If no possible match was found (after 
comparing with all landmark samples), we concluded that 
the image contained no landmark.  Otherwise, the best 
match was used to annotate the image. The value of 
distance threshold was computed offline using the sample 
images and a set of non-sample images (images not 
containing the tower and the church). This set is referred 
to as the training set. Evaluations were done with various 
thresholds to determine the optimal value, which was 
found to be 10.7.  

5. CONCLUSIONS  
 
In this paper, we presented the landmark annotation of the 
EXTENT system. Context information was first used to 
narrow down the search to a small pool of candidate 
landmarks. Next SIFT features were used to analyze 
content and locate landmarks. We demonstrated 
experimentally on two different data sets that the system 
achieved high annotation accuracy.  
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