
EXPLOITING LIMITED UPSTREAM BANDWIDTH IN PEER-TO-PEER STREAMING

Yingfei Dong Ewa Kusmierek Zhenhai Duan

Dept. of Electrical Engineering Poznan Supercomputing Dept. of Computer Science
University of Hawaii and Networking Center Florida State University
Honolulu, HI 96822 61-704 Poznan, Poland Tallahassee, FL 32306
yingfei@hawaii.edu kusmiere@man.poznan.pl duan@cs.fsu.edu

ABSTRACT

In this paper, we propose a hybrid architecture to integrate
Peer-to-Peer (P2P) streaming approaches with content dis-
tribution networks (CDNs). We further utilize Multiple De-
scription (MD) coding in this architecture to address chal-
lenging issues in P2P approaches such as low peer upstream
bandwidth and low quality assurance. The proposed schemes
take advantage of the high availability of CDNs, the flexi-
bility of layered MD, and the high scalability of P2P ap-
proaches to better utilize peer upstream bandwidth, reduce
server load, and assure service quality. In addition, we eval-
uate the performance of the proposed approach through analy-
sis and simulation.

1. INTRODUCTION
Current video streaming systems can be classified into three
types of architectures: client-server models on unicast/ mul-
ticast networks, CDNs with dedicated proxy servers (e.g.,
Akamai), and P2P streaming approaches harvesting peer re-
sources for scalability (e.g., SRMS [2], PROMISE [5], ZIG-
ZAG [7]). Client-server approaches are not scalable to sup-
port large-scale systems, while CDNs usually require ex-
tremely high investment in broad delivery infrastructures
and demand a rather large amount of resources to achieve
scalability. P2P approaches are able to scale to large sys-
tems with low costs, significantly reduce server load, and
potentially solve the flash crowd issue. However, they usu-
ally can not assure service quality since peers often ran-
domly join or leave. Another key challenge in P2P stream-
ing is limited upstream bandwidth of peers.

In this paper, we propose a CDN-P2P hybrid streaming
architecture that exploit the high availability of CDNs and
the abundant scalability and flexibility of P2P systems. We
further incorporate Multiple Description (MD) coding [4]
with dynamic peer collaboration to reduce server load and
ensure streaming quality and stability.

The proposed hybrid architecture focuses on on-demand
services. Many application-level multicast approaches have
been proposed for large-scale streaming; however, they more

focus on live streams (without quality assurance) and gener-
ally do not fit on-demand streaming with (strong) quality re-
quirements, as pointed out in [6]. Two other hybrid architec-
tures have been investigated. CoopNet addressed the flash
crowd issue of live streams by exploiting MD with multi-
ple dynamic distribution trees [6]. It used a central server
that performs a directory service for clients to obtain live
streams from cooperative peers. For on-demand streams, a
CoopNet server simply sends a list of supplying peers to a
requesting client; the client contacts with peers directly to
obtain the content. CoopNet did not explicitly investigate
issues for on-demand service. We further investigate such
issues in this paper and propose efficient on-demand stream-
ing schemes for reducing server load and ensuring service
quality.

Xu, et. al., proposed another hybrid architecture [8] un-
der the setting of static subscribers for on-demand service.
Using caches at known peers on a subscriber list, it serves a
single video to other peers on the list in a cycle. Note that
it is designed to publish one video per release cycle to all
subscribers. It emphasizes reducing server load and fairly
utilizing peer resources under limited contribution policies.
It requires each peer to buffer an entire video and does not
address peer failure/departure issues. In this paper, we ad-
dress the issue of simultaneously supporting a set of videos.
We also consider peer failure issues. Furthermore, we do
not assume that we know all peers a priori.

The remainder of this paper is organized as follows. In
Section 2, we present a hybrid architecture and basic as-
sumptions and ideas. In Section 3, we investigate an unique
caching policy (based on MD) for multiple videos to har-
vest peer capabilities and reduce server load. In Section 4,
we evaluate peer selection schemes for serving requests and
maximizing peer streaming capacity. We conclude this pa-
per and introduce future research in Section 5.

2. SYSTEM OVERVIEW

Architecture. Our goals are to reduce server load by ex-
ploiting limited peer upstream bandwidth and to provide

0-7803-9332-5/05/$20.00 ©2005 IEEE

stable quality in peer streaming. Different from the pre-
vious approaches, we focus on efficient schemes for mini-
mizing server load and ensuring streaming quality in a pro-
posed two-level hybrid architecture. As shown in Fig.1, at
the upper level, we use an overlay network (i.e., a CDN) to
deliver videos from a central server to proxy servers; at the
lower level, each proxy server transmits video data to clients
with the assistance of a collaborative-peer network. This
peer network consists of clients who commit storage and
computing resources as collaborative caches to assist the
proxy server. The proxy server provides a directory service
for clients in a local network (or a cluster of domains) and
schedules streaming sessions to deliver video data to clients
with the help of collaborative caches. A central server has a
complete repository of videos while a proxy often partially
caches popular videos.

In this paper, we use a layered MD for video encoding.
MD is designed for unreliable networks, different from tra-
ditional progressive layered coding designed for lossless en-
vironments or heterogeneous client capabilities. At a source,
a video is encoded into multiple descriptions and transmit-
ted through different unreliable channels to a destination
as substreams. Each description can be decoded indepen-
dently. The more descriptions are received at the destina-
tion, the better the streaming quality is achieved. MD is a
natural fit for highly dynamic and unreliable P2P streaming
environments.

Layered MD. For each video, we use the Priority Encod-
ing Transmission (PET) technique [1] to packetize it into
layered multiple descriptions [3]. Layered MD is able to
achieve both robustness on unreliable networks and adaptiv-
ity to heterogeneous client capability, where we can deliver
base layer descriptions to low bandwidth clients and also
deliver enhancement layer descriptions to high bandwidth
clients. PET divides a video into groups of frames and each
group is independently encoded into layers of increasing
importance. Furthermore, a layer n of a group is partitioned
into blocks of Kn bytes, and each block is expanded into a
N -byte block using an (N , Kn) Reed-Solomon code, where
N > Kn. For each group, the expanded blocks for all lay-
ers are packetized into N packets by assigning the ith byte
into the ith packet, where i = 1, · · · , N . The advantage of
this scheme is that all layers up to n can be recovered, if
K out of N packets are received, where Kn ≤ K . In this
scheme, all packets are equally important and only the num-
ber of packet received determines the decoding quality of a
group (of the video). The nth packet is the nth description
for a group; the sequence of all the nth packets of groups
becomes the nth description of a video.

Definitions and Assumptions. The proposed system sup-
ports on-demand service for a fixed set of N videos, whose
popularity is Zipf-distributed. For ease of illustration, we
assume that all videos has the same number of descriptions,

Central Sever

Proxy Sever

Proxy Sever

Overlay Network

across WAN

Local Peer Network

other clients

Collaborative

clients

Fig. 1. A Hybrid Collaborative Streaming Architecture.

and the bandwidth of a description is U0. Then a peer i

provides an upstream bandwidth Ui = k · U0, where k =
1, 2, · · · , Tp and Tp is the number of different types of peers.
We also assume that we have sufficient bandwidth between
peers in local networks, while the peer upstream bandwidth
is the common bottleneck. Peers are willing to contribute
for a long period of time for improving its status/priority
in the system (e.g., for premium service), earning service
credits, and gaining the quality assurance for future ses-
sions. A peer i contributes a cache of size bi, which caches
descriptions of one or several videos for a long period of
time. However, a peer may leave without a notice with a
probability P ∗. When a peer rejoins the system, it still has
previously cached descriptions. We assume that we do not
know arrivals a priori, while we know that the requests of a
video j follow an exponential distribution with a mean rate
λj , 1 ≥ j ≥ N . Then the total accesses of all videos will
have a mean arrival rate of

∑N

j=1
λj . A client may access

another video after its session is done. Therefore, its buffer
may be used to cache descriptions from different videos.
A client becomes a supplying peer only after it accesses a
video completely and it has complete descriptions.

3. EXPLOITING UPSTREAM BANDWIDTH

In this section, we first propose an unique caching strategy
by considering both upstream bandwidth and video popular-
ity. We then compare the proposed policy with a common
caching strategy used by p2p systems.

Caching policy. We propose an unique caching policy
to exploit the limited peer upstream bandwidth and to re-
duce server load through MD. We let a peer cache only
few descriptions (instead of all descriptions) of a popular
video. Since a popular video is likely spread over many
peers and each peer only caches a small part of it, peer fail-
ures will have less effect on the streaming quality of the
video. Furthermore, we let a peer cache descriptions for a
not-so-popular video. Since only a few clients will access
a not-so-popular video, each client needs to cache more de-
scriptions for shifting load from a server. However, the peer
upstream bandwidth is the dominant factor that determines
the number of streams from a peer. For example, if the peer
upstream bandwidth can support only two video descrip-
tions simultaneously, even when we may be able to cache

three descriptions of the same video on the peer, we can
only choose two out of these three descriptions to serve a
request. Caching the extra description is not helpful in re-
ducing server load. Instead, it may be useful to use the space
to cache a description of another video.

Policy 1: A peer caches all descriptions of a video after
its access. Given its limited cache space, when the cache is
full, it will replace a previously-cached video with the new
video. The replacement is determined based on video pop-
ularity (or a least-recently-used policy). As a result, popu-
lar videos are more likely to replace less popular videos at
peers, such that the requests for less popular videos are more
likely to be served by the server. Due to the large number of
less popular videos, these requests may cause a high server
load and potential delays and rejections.

Policy 2: A peer caches a few descriptions of a video
based on its upstream bandwidth and the video popularity.
The proxy server passes popularity information to a peer. 1

We compare the above two approaches in request rejec-
tion rate, peer contribution, and server load in the following.
For N = 100 videos, we choose the Zipf shape parameter
as 0.27. Each video has eight descriptions. Each client has a
cache size of eight descriptions and an upstream bandwidth
of one description. We set the server capacity C to 16 or
32 descriptions. We use a load factor F to determine the
number of requests arriving in the system. When F = 1,
arrivals tend to use a 100% of server bandwidth when no
peer assistance is available.

As shown in Fig. 2(a), the rejection rates under policy
1 (shown as the two dashed curves) increase sharply, as we
increase the system load. Each curve corresponds to a given
server capacity C, i.e., the reserved bandwidth at a server.
When we cache descriptions based on peer upstream capac-
ities, as shown by the two solid curves, the system is more
tolerant to the increasing load. Fig. 2(b) and Fig. 2(c) ex-
plain the differences behind these two approaches. Clearly,
the peer contribution under policy 2 (the solid curves in
Fig. 2(b)) grows larger than that of policy 1 (shown as the
dashed curves) as the system load increases; the server load
under policy 2 (the solid curves in Fig. 2(c)) is dramati-
cally lower than the server load under policy 1 (shown as
the dashed curves). The top curve in Fig. 2(d) shows the ra-
tio of peer contribution under policy 2 over that of policy 1;
the bottom curve in Fig. 2(d) shows the ratio of server load
under policy 2 over that of policy 1. Clearly, the proposed
policy outperforms the commonly-used approach.

We discuss the basic idea for analyzing the two poli-
cies here and will present a detailed analysis in our fol-
lowup work. For ease of illustration, we assume that all

1Video Description vs. Video segments. First, using descriptions is
much easier and faster to fix peer failures and data loss without significant
drops in playback quality. Second, many approaches propose to use fine-
grain segments and tend to incur more management costs and complexity.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Rejection rate

Load Factor

R
ej

ec
tio

n
R

at
e

C = 32, Policy 1
C = 16, Policy 1
C = 16, Policy 2
C = 32, Policy 2

(a) Rejection rate.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6
x 10

7 Peer Contribution

Load Factor

P
ee

r C
on

tri
bu

tio
n

C = 32, Policy 2
C = 32, Policy 1
C = 16, Policy 2
C = 16, Policy 1

(b) Peer contribution.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
x 10

6 Server Load

Load Factor

S
er

ve
r L

oa
d

C = 32, Policy 1
C = 16, Policy 1
C = 16, Policy 2
C = 32, Policy 2

(c) Server load.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Ratio of Client Contribution and Server Load

Load Factor

R
at

io
 o

f C
on

tri
bu

tio
n

an
d

Lo
ad

Peer contribution
Server load

(d) Ratio of peer contribution
and ratio of server load.

Fig. 2. Comparison of caching policies. We use C in the
above legends to denote the server capacity.

peers commit the same amount of upstream bandwidth U .
We define the peer capacity for video i as Si. We then have
Si(t) = ni(t) ∗ U , where ni(t) is the number of descrip-
tions of video i spread over peers at time t. We can find
ni(t) as the difference between Ei(λi, t) and Di(t), where
Ei(λi, t) is the total number of accesses at different peers
for video i up to t, and Di(t) is the number of descriptions
of video i that have been discarded at peers up to t. At time
t, we estimate the expected required bandwidth for serving
requests for video i, Ri(t), based on λi. After time t′ ≥ T̂ ,
if Si(t

′) ≥ Ri(t
′), all new requests can be served by peers.

Therefore, caching more copies of video i does not help in
terms of reducing server load for servicing requests of this
video. Based on the video popularity, we will find the peer
capacity for each video after a period of time. Using the
peer capacity as a guideline, we can determine how to cache
videos at peers.

4. PEER SELECTION FOR DELIVERY

In the previous section, we use a server to determine how
descriptions are cached at peers and pick some available
peers to server a request, without considering peer fairness
and failure. In this section, we investigate how to select
peers for servicing requests to further reduce sever load,
achieve fair accesses, and assure quality under peer failures.

A video session is served in two steps: a client first
sends a request to a server; then it obtains a list of peers pro-
viding different descriptions and fetches these descriptions
from these peers. When the peer capacity of a video is suf-
ficient to provide all descriptions for a request, we have two
choices to schedule peers to server a request, i.e., the server
can assign specific peers to serve the request, or send the

client the directory information and let the client determine
which peers to request the video from in a distributed man-
ner. The first method is able to achieve statistical global-
optimization; however, it potentially overloads the server
and hinders failure recovery, since the server has to stream
data, respond to requests, and fix failures. The second ap-
proach removes the single bottleneck, and is more scalable
and fault-tolerant since it only uses the server as a directory
service.

We divide the system time into service cycles. Each peer
will contract with a server on its contribution in a cycle. We
classify peers into service classes based on their promised
contribution to the system. When a peer fulfills its promise
in a period of time, this peer will be released from this cy-
cle (completely retired or revivified in the next cycle). For
example, a peer may only promise to serve five descriptions
per cycle. In each cycle, a peer is either in-service or not-
in-service, and it will not contribute more than its contract
for fairness.

Centralized Scheduling We first examine a centralized
approach. A proxy server lets each peer cache a number of
descriptions based on its upstream capacity as introduced in
the previous section; and the server keeps a list of these de-
scriptions. When a request arrives, the server checks the list,
finds an assignment that reduces server load and fairly uses
peers’ resources, e.g., always choosing the least-recently
used peers. It then sends a list of supplying peers to the
requesting client. The client obtains descriptions from these
peers (and the server when there are no sufficient peers).
This approach is able to easily achieve fair accesses of peers,
but it needs the server to keep track of every description at
peers. In case of peers failures, the client has to ask the
server to find recovery sources either from other peers or
the server.

We define the peer streaming capacity as the total num-
ber of clients that can be supplied by peers simultaneously
within a cycle. Assume that each peer is available for c cy-
cles and can stream x descriptions simultaneously, where x

is the fraction of all descriptions available for a given video.
For an average of λ requests per cycle, the peer streaming
capacity gradually increases and eventually reaches cxλ af-
ter cycle c, provided that the video is not a subject to cache
replacement. If cx < 1, the peer streaming capacity is not
sufficient to provide service to all new clients. We need to
carefully choose supplying peers so that their capacity is
efficiently utilized. On the other hand, when cx is larger
than the number of descriptions per video, i.e., each peer
contributes more data than it receives, the peer streaming
capacity is larger than the total required amount. In that
case, it is important to fairly utilize the resource provided
by peers.

In order to minimize the server load, we have to maxi-
mize the number of supplying peers in each cycle. In order

to achieve this goal, we greedily preserve the remaining peer
capacity by selecting peers with the smallest number of ser-
vice cycles remaining. A different selection may result in a
smaller number of supplying peers in some subsequent cy-
cles. A strictly optimal selection cannot be achieved since
we do not know client arrivals a priori. The basic idea is to
preserve as much spare capacity as possible for the future.

In order to ensure fairness, we greedily choose a peer
with the smallest resource utilization, defined as the per-
centage of the time that the peer provides service to others.
For example, if a peer has been serving others for 1.5 cy-
cles after its own playback, using its all upstream capacity,
its resource utilization is 67%, if we consider that a cycle is
equal to the video playback time.

Distributed Scheduling. We also consider a distrib-
uted approach for peer selection, which reduces the server
overhead related to maintaining detailed information about
peers. Upon receiving a request, the server passes a list of
locations of descriptions to a requesting client. The client
chooses supplying peers from the list randomly or in a load-
aware fashion. The client may contact the candidate peers to
obtain further information about peer availability and their
utilization. To evaluate this approach, we compute the av-
erage proxy server load over time period of a given length
and the average peer resource utilization.

5. CONCLUSION AND FUTURE WORK
In this short paper, we have proposed a hybrid architecture
to take advantage of both CDNs and P2P systems for large-
scale video streaming. We have investigated an unique caching
approach that exploits MD and peer upstream bandwidth
to reduce server load. We have further discussed different
peer selection schemes for better utilizing peer caches under
their bandwidth constraints. We will further perform formal
analysis of proposed schemes and investigate various ap-
proaches for fairness, quality assurance, and efficiency.

6. REFERENCES

[1] A. Albanese, J. Blomer, J. Edmonds, M.Luby, and M. Sudan. Priority encod-
ing transmission. IEEE Trans. Information Theory, Vol.42, pp.1737-1744, Nov.
1996.

[2] S. Banerjee, S. Lee, R. Braud, S. Bhattacharjee, and A. Srinivasan. Scalable
resilient media streaming. in Proc. of NOSSDAV’04, 2004.

[3] P. Chou, H. Wang, and V. Padmanabhan. Layered multiple description coding.
Packet Video Workshop, Nantes, France, April 2003.

[4] V. K. Goyal. Multiple description coding: Compression meets the network. IEEE
Signal Processing Magazine., vol. 18, pp. 74–93, May 2001.

[5] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava. Promise: Peer-to-peer
media streaming using collectcast. ACM Multimedia ’03, Pages 45-54, Nov.
2003.

[6] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai. Distributing
streaming media content using cooperative networking. in Proc. of NOSS-
DAV’02, Miami, Florida, 2002.

[7] D. Tran, K. Hua, and T. Do. Scalable application layer multicast. in Proc. of
IEEE INFOCOM, Mar., 2003.

[8] D. Xu, S. Kulkarni, C. Rosenberg, and H. Chai. A CDN-P2P hybrid architec-
ture for cost-effective streaming media distribution. Computer Networks, Vol.44,
Issue.3, pp.353-382, 2004.

	Index
	ICME 2005

	Conference Info
	Welcome Messages
	Venue Access
	Committees
	Sponsors
	Tutorials

	Sessions
	Wednesday, 6 July, 2005
	WedAmOR1-Action recognition
	WedAmOR2-Video conference applications
	WedAmOR3-Video indexing
	WedAmOR4-Concealment & information recovery
	WedAmPO1-Posters on Human machine interface, interactio ...
	WedAmOR5-Face detection & tracking
	WedAmOR6-Video conferencing & interaction
	WedAmOR7-Audio & video segmentation
	WedAmOR8-Security
	WedPmOR1-Video streaming
	WedPmOR2-Music
	WedPmOR3-H.264
	WedPmSS1-E-meetings & e-learning
	WedPmPO1-Posters on Content analysis and compressed dom ...
	WedPmOR4-Wireless multimedia streaming
	WedPmOR5-Audio processing & analysis
	WedPmOR6-Authentication, protection & DRM
	WedPmSS2-E-meetings & e-learning -cntd-

	Thursday, 7 July, 2005
	ThuAmOR1-3D
	ThuAmOR2-Video classification
	ThuAmOR3-Watermarking 1
	ThuAmSS1-Emotion detection
	ThuAmNT1-Expo
	ThuAmOR4-Multidimensional signal processing
	ThuAmOR5-Feature extraction
	ThuAmOR6-Coding
	ThuAmSS2-Emotion detection -cntd-
	ThuPmOR1-Home video analysis
	ThuPmOR2-Interactive retrieval & annotation
	ThuPmOR3-Multimedia hardware and software design
	ThuPmSS1-Enterprise streaming
	ThuPmNT1-Expo -cntd-
	ThuPmOR4-Faces
	ThuPmOR5-Audio event detection
	ThuPmOR6-Multimedia systems analysis
	ThuPmOR7-Media conversion
	ThuPmPS2-Keynote Gopal Pingali, IBM Research, "Ele ...

	Friday, 8 July, 2005
	FriAmOR1-Annotation & ontologies
	FriAmOR2-Interfaces for multimedia
	FriAmOR3-Hardware
	FriAmOR4-Motion estimation
	FriAmPO1-Posters on Architectures, security, systems &a ...
	FriAmOR5-Machine learning
	FriAmOR6-Multimedia traffic management
	FriAmOR7-CBIR
	FriAmOR8-Compression
	FriPmOR1-Speech processing & analysis
	FriPmSS1-Sports
	FriPmOR2-Hypermedia & internet
	FriPmOR3-Transcoding
	FriPmPO1-Posters on Applications, authoring & editi ...
	FriPmOR4-Multimedia communication & networking
	FriPmOR5-Watermarking 2
	FriPmSS2-Sports -cntd-
	FriPmOR6-Shape retrieval

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	1 SIGNAL PROCESSING FOR MEDIA INTEGRATION
	1-CDOM Compressed Domain Processing
	1-CONV Media Conversion
	1-CPRS Media Compression
	1-ENCR Watermarking, Encryption and Data Hiding
	1-FILT Media Filtering and Enhancement
	1-JMEP Joint Media Processing
	1-PROC 3-D Processing
	1-SYNC Synchronization
	1-TCOD Transcoding of Compressed Multimedia Objects
	2 COMPONENTS AND TECHNOLOGIES FOR MULTIMEDIA SYSTEMS
	2-ALAR Algorithms/Architectures
	2-CIRC Low-Power Digital and Analog Circuits for Multim ...
	2-DISP Display Technology for Multimedia
	2-EXTN Signal and Data Processors for Multimedia Extens ...
	2-HDSO Hardware/Software Codesign
	2-PARA Parallel Architectures and Design Techniques
	2-PRES 3-D Presentation
	3 HUMAN-MACHINE INTERFACE AND INTERACTION
	3-AGNT Intelligent and Life-Like Agents
	3-CAMM Context-aware Multimedia
	3-CONT Presentation of Content in Multimedia Sessions
	3-DIAL Dialogue and Interactive Systems
	3-INTF User Interfaces
	3-MODA Multimodal Interaction
	3-QUAL Perceptual Quality and Human Factors
	3-VRAR Virtual Reality and Augmented Reality
	4 MULTIMEDIA CONTENT MANAGEMENT AND DELIVERY
	4-ANSY Content Analysis and Synthesis
	4-AUTH Authoring and Editing
	4-COMO Multimedia Content Modeling
	4-DESC Multimedia Content Descriptors
	4-DLIB Digital Libraries
	4-FEAT Feature Extraction and Representation
	4-KEEP Multimedia Indexing, Searching, Retrieving, Quer ...
	4-KNOW Content Recognition and Understanding
	4-MINI Multimedia Mining
	4-MMDB Multimedia Databases
	4-PERS Personalized Multimedia
	4-SEGM Image and Video Segmentation for Interactive Ser ...
	4-STRY Video Summaries and Storyboards
	5 MULTIMEDIA COMMUNICATION AND NETWORKING
	5-APDM Multimedia Authentication, Content Protection an ...
	5-BEEP Multimedia Traffic Management
	5-HIDE Error Concealment and Information Recovery
	5-QOSV Quality of Service
	5-SEND Transport Protocols
	5-STRM Multimedia Streaming
	5-WRLS Wireless Multimedia Communication
	6 SYSTEM INTEGRATION
	6-MMMR Multimedia Middleware
	6-OPTI System Optimization and Packaging
	6-SYSS Operating System Support for Multimedia
	6-WORK System Performance
	7 APPLICATIONS
	7-AMBI Ambient Intelligence
	7-CONF Videoconferencing and Collaboration Environment
	7-CONS Consumer Electronics and Entertainment
	7-EDUC Education and e-learning
	7-SECR Security
	7-STAN Multimedia Standards
	7-WEBS WWW, Hypermedia and Internet, Internet II

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Zhenhai Duan
	Ewa Kusmierek
	Yingfei Dong

