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ABSTRACT

In this paper, we present a method to retrieve natural im-
ages by sketch query. To measure the similarity between
the sketch and an image, relevant regions are first located in
that image through a multi-resolution search, and a normal-
ized local shape similarity is proposed for image retrieval.
Efficiency and other implementation issues are discussed.
Experimental results show that it is an effective approach
for content-based image retrieval.

1. INTRODUCTION

Content-based image retrieval (CBIR) has drawn widespread
research interest. In CBIR systems, color and texture fea-
tures are commonly used to represent the image content,
while shape features are occasionally used. Most CBIR sys-
tems assume that a sample image is available to initiate the
retrieval process. However, in many cases, it’s quite incon-
venient for users to find a sample image as query. A better
way is to allow users to draw a sketch to represent the search
concept. This is the so-called query by sketch.

Sketch contains only shape information. A user survey
about cognition aspects of image retrieval shows that users
are more interested in retrieval by shape than by color and
texture [2]. However, retrieval by shape is still considered
one of the most difficult aspects of content-based search [4].
Rajendran et al [3] generates edge signatures for images and
sketch query, and compare their curvature-histograms and
direction-histograms for shape similarity. In [6], strokes are
extracted from images and query, then the spatial order and
feature distance of them are considered for shape similarity.
Mori et al [1] use ”shape context” to quickly prune a search
for similar shape, where a shape is a discrete set of points
and for each point the shape context is a histogram of rel-
ative positions of the remaining points. All these systems
can only work on clean images where each contains only
one object and is compared to the query image or sketch as
a whole.

Natural images are much more complex, often contain
multiple and irrelevant objects. The shape similarity of the
sketch to images is actually determined by that of the sketch
to local relevant regions. But exhaustive search over all
regions in each image is unaffordable. Rucklidge [5] pro-

posed an algorithm to efficiently localize objects using Haus-
dorff distance. We extend his algorithm to image retrieval
by sketch in this paper. For each image, we localize a set
of regions relevant to the given sketch. Then a normal-
ized local shape similarity measure is proposed to select the
most similar one. Some techniques for efficiency are also
exploited.

The remainder of this paper is organized as follows. In
Section 2, we briefly illustrate the process to localize local
relevant regions. In Section 3 we present the normalized lo-
cal shape similarity and describe the whole retrieval system.
Experiments are presented in Section 4. Finally, a short con-
clusion is given in Section 5.

2. RELEVANT REGIONS LOCALIZATION

Natural images record some objects together with their en-
vironments, including background and other neighbor ob-
jects. Besides, each image is an observation under some
perspective. Relevant regions in an image refer to those with
high shape similarity to the sketch that undergo some affine
transformation. To perform image retrieval by sketch, we
need to solve two problems. One is how to define the shape
similarity between the sketch and the relevant region; the
other is how to find relevant regions, which is actually a
search problem in the affine transformation space.

2.1. Shape Similarity by Hausdorff distance

Shape can be represented by a set of points, for both sketches
and images. Hausdorff distance from set A to set B is de-
fined as:

h(A,B) = max
a∈A

{min
b∈B

‖a− b‖} (1)

where a and b are points of sets A and B respectively. It
will be small when every point of A is near some point of
B. In this paper, A is a point set representing an image, and
B is a point set representing a sketch. We call h(B,A) the
forward distance, and h(A,B) the reverse distance.

Generally h(A,B) 6= h(B,A), and undirected Haus-
dorff distance can be defined as

H(A,B) = max(h(A,B), h(B,A)) (2)
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To be robust to noise, partial directed Hausdorff distance
hf (A,B) is considered. f is some value between zero and
one. hf (A,B) is computed by finding the distance from
every point of A to the closest point of B, then find the f -th
quantile value of these values. When f = 1, hf (A,B) =
h(A,B).

To consider the shape similarity between the sketch B
and a local region in image A, which is in a box [mx,Mx]×
[my,My], the box-reverse Hausdorff distance hbox(A,B) is
defined [5].

hbox(A,B) = max
(ax, ay) ∈ A

mx ≤ ax ≤ Mx
my ≤ ay ≤ My

{min
b∈B

‖(ax, ay)− b‖} (3)

As before, the partial box-reverse Hausdorff distance can be
defined and denoted by hfR

box(A,B).
Suppose that t is an affine transformation. It is a six-

tuple (m00,m01,m10,m11, tx, ty), representing a mapping

(x, y) → (m00x + m01y + tx,m10x + m11y + ty) (4)

Let t(B) denotes the result of applying t to B. Its boundary
decides a local region in A. The partial forward distance
d(t) and partial box reverse distance d′(t) can be defined as
[5]:

d(t) = hfF (t(B), A) (5)

d′(t) = hfR

box(A, t(B)) (6)

There are two criteria [5] to evaluate t, which is actu-
ally to evaluate the shape similarity between t(B) and the
corresponding local region in A.

1. Forward Criterion. d[t] ≤ τF .

2. Reverse Criterion. d′[t] ≤ τR.

An equal and computationally easier method to verify these
two criteria is to calculate the fraction of points whose for-
ward distances are less than τF , and the fraction of points
whose box-reverse distances are less than τR. They are
called forward fraction f [t] and box-reverse fraction f ′[t]
respectively. The corresponding thresholds are fF and fR

2.2. Multi-resolution Search

To locate the relevant regions in an image, we adopt Ruck-
lidge’s method [5] to search through the transformation space
to find all transformations that satisfy the above criteria.
Here we briefly describe his algorithm.

We first explain two approximations techniques in this
algorithm. The transformation space is rasterized so that
only transformations (i1/Mx, i2/My, i3/Mx, i4/My, i5, i6)
for integer values of i1 · · · i6 are considered. [Mx,My] is
the sketch size. According to equation 4, changing any one

of these integer parameters by ±1 changes the location of
any transformed sketch point by at most one unit. The trans-
formation is alternatively represented by [i1 · · · i6], using
square brackets to indicate the raster basis is being used.
Another approximation technique is rounding transformed
points into integral coordinates. t[B] denotes the result of
rounding each point of t(B). d[t] and d′[t] are defined by
replacing t(B) with t[B] in equations 5 and 6.

For efficiency, the whole process is divided into two
phases. The first one is to find all transformations that sat-
isfy the forward criterion. The second one is to verify them
on the reverse criterion one by one.

The fist phase is implemented by a cell decomposition
strategy. ”Cells” refer to rectilinear regions of transforma-
tion space. The whole transformation space is initially di-
vided into a set of cells with equal size. Then each cell is
tested to see whether it’s possible to contain any transfor-
mation satisfying the forward criterion. If not, it’s dropped.
Otherwise this cell is further divided into a set of cells with
finer resolution. We repeat testing and dividing until the
finest resolution is reached where each cell contains only
one transformation. The key technique is to efficiently test
whether a given cell possibly contains a transformation that
dt ≤ τF

For d[t], we need to compute the closest point in A for
each point of t[B]. Since all the points of t[B] have integral
coordinates, we can compute the closest point in A for all
integral points beforehand. The result is the distance trans-
form of A:

∆(x, y) = min
a∈A

‖(x, y)− a‖ (7)

Now given t, we can probe ∆(·) for all points of t[B], of
which the f -th quantile value is d[t].

Given a cell R, define d[R] = mint∈R d[t]. The ideal
rule to reject a cell is to decide whether d[R] > τF holds.
It’s approximated by the following method to efficiently es-
timate a lower bound of d[R].

Denote tl as the transformation whose parameters all
have their lowest value in R and th having highest values.

tl = [ml
00,m

l
01,m

l
10,m

l
11, t

l
x, tly]

th = [mh
00,m

h
01,m

h
10,m

h
11, t

h
x, thy ]

Given any point b, as t varies within the cell R, t[b] varies
within a box whose top left corner is at tl[b] and bottom
right corner is at th[b]. The box size is dx by dy:

dx = (mh
00 −ml

00) + (mh
01 −ml

01) + (thx − tlx)

dy = (mh
10 −ml

10) + (mh
11 −ml

11) + (thy − tly)

Define the box distance transform of A:

∆′(x, y) = min
0 ≤ x′ ≤ dx

0 ≤ y′ ≤ dy

∆(x + x′, y + y′) (8)



Obviously ∆′(tl[b]) = mint∈R(∆(t[b])) holds for any point
b. Therefore the f -th quantile value of ∆′(tl[·]) for all points
in B is a lower bound of d[R]. The box size dx by dy is
determined only by the size of R , so ∆′(·) can be computed
beforehand for all integral points on each level of resolution.

3. IMAGE RETRIEVAL

Before doing the search, we do not know how well a given
sketch represents the objects that the user intends to search
for. Therefore, we can not set the forward criteria too strictly.
Otherwise we may fail to find satisfying transformations in
all images. Therefore with the criteria being not too strict,
we have to handle a number of satisfying transformations
for many images in general cases. For each image, we need
to find the best one from the candidate transformations to
represent the shape similarity between the whole image and
the sketch.

Rucklidge [5] extended his method to find the best trans-
formation which he defined as the one with minimum d[t].
But it’s not suitable for general image retrieval by sketch.
Because d[t] is a biased shape similarity measure, which
we’ll explain next.

3.1. Normalized Local Shape Similarity

We derive a measure from previous criteria to compute the
shape similarity between region and sketch. Due to the fol-
lowing two kinds of bias, the aforementioned criteria can
not be directly used as shape similarity measure for image
retrieval.

1. Detail Bias The forward fraction f [t] is biased toward
those that transform the sketch into regions with more
details. In the extreme case, f [t] can be very close to 1
for a region full with edge points, whatever the sketch
is.

2. Scale Bias Both the forward fraction f [t] and the box-
reverse fraction f ′[t] are biased toward those that trans-
form the sketch into small regions. In the extreme
case, f [t] and f ′[t] can be very close to 1 when the
scale value of a transformation t is very small, what-
ever the sketch and the image are.

These two kinds of bias are very common for image re-
trieval by sketch. For the detail bias, sketch is supposed
to be more concise than images. And images often vary in
the magnitude of details. Those with more details are more
possible to have a higher value on f [t]. For the scale bias,
sketch is not in the same scale with objects in images. And
images also vary in the scale level.

So we propose to use a normalized f ′[t] to compute the
shape similarity. We note that f [t] is still necessary because

candidate transformations are generated by passing the for-
ward criteria.

As mentioned before, f ′[t] is the fraction of points whose
partial box reverse distances are less than τR:

f ′[t] =
#({a ∈ At

box | minb∈B ‖a− t[b]‖ < τR})
#(At

box)
(9)

where At
box denotes the point set of the local region in A

corresponding to t and # is the size function, #(At
box) is

the number of points in At
box.

To make compensation for Scale Bias, the normalized
box-reverse fraction f ′N [t] is defined as:

f ′N [t] = f ′[t]× 2

√
t2sx + t2sy (10)

Where tsx, tsy are the scale coefficients of t in x and y
dimensions respectively. f ′N [·] can help to find an appropri-
ate one from the candidate transformations, instead of bias-
ing toward small scale.

Other existing shape similarity measure can also be used
instead of f ′N [·]. But they require much more extra compu-
tation effort.

3.2. Retrieval System

Now we summarize the whole retrieval system. Edges are
extracted for all images beforehand. For each image, A is
the set of its edge points. B is the set of points sampled
directly from the sketch drawing. Given these two point
set, we find all relevant regions in A whose corresponding
transformations satisfy the forward criterion, then select the
best one t∗ according to f ′N (·). At last we sort all the images
according to f ′N (t∗). Those with high values on f ′N (t∗) are
returned.

In this system, the efficiency bottleneck is to localize
relevant regions. The cost time varies much across images.
It depends on threshold parameters: τF and fF . In the ex-
treme case of fF = 0, all transformations can satisfy the
forward criterion. Then it’s an exhaustive search. Besides,
even with hand tuned parameters, it may still costs more
than ten hours to complete the search process for some im-
ages. The extreme sample is an image full with edge points,
where all transformations can satisfy the forward criterion.

We take two approximated techniques to prevent from
wasting too much time on one image. The first one is to
apply a timing interruption mechanism. When the cost time
is beyond 2 minutes on one image, the search process is
stopped. The second one is to stop when the number of
probed cells is more than 2,400,000. It doesn’t mean that
we drop the image when the search process is forced to stop.
Actually before it is stopped, we may have already found
many satisfying transformations for this image. Then we
can still get an approximation similarity value between this
image and the sketch.



4. EXPERIMENTS

The image database consists of 1,100 from 11 categories of
Corel database, each of which contains 100 images. The
categories include Balloon, Beach, Bird, Bobsled, Bonsai,
Building, Bus, Butterfly, Car, Cat and Cougar. It is hard to
draw representative shape for Beach and Cougar. For each
of the other 9 categories, we draw one sketch as query. All
images are preprocessed by canny edge extraction. For time
reason, we only do experiments in the 4D transformation
space: translation and scale. The scale for x and y dimen-
sion ranges from 1 to 1.5. The translation range is limited
only by images’ size. The four threshold parameters are set
as following: τF = 10, fF = 70%, τR = 10, fR = 40%.
All experiments are conducted in a PC with Xeon 3.0 GHz
CPU and 2.0GB RAM.

4.1. Accuracy

To evaluate system accuracy, average precision-scope mea-
sure is applied. Scope specifies the number of images re-
turned. Precision is defined as the number of retrieved rel-
evant images over the value of scope. Those images in the
same category as the query are deemed to be relevant. The
result is shown in Figure 1, benchmark refers to random se-
lection strategy. Among all images, there are about 9% in
the same category with a given sketch, so the expected pre-
cision of random selection is about 9%.

Fig. 1. Average Retrieval Accuracy

4.2. Efficiency

The running time for one sketch query ”Balloon” is shown
in Figure 2. The x axis is the cost time in seconds for one
image. The y axis is the ratio of images whose running
times are longer than the corresponding x value. The timing
interruption mechanism is not very accurate so that it may
cost a little more than 2 minutes in a few cases.

The average running time to compare a sketch to each
image is less than 40 seconds.

Fig. 2. Time to Searching through Images

5. CONCLUSION

In this paper, we present a method to retrieve natural images
by sketch. Local regions in each image are located to match
the given sketch. A Hausdorff distance based criterion is
taken as the shape similarity measure. This method is ro-
bust to affine transformation. The major drawback of this
method is that its time cost is too high. More efficient ap-
proximation algorithm to locate sketch in images is worthy
further investigation.
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