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ABSTRACT

The existing techniques for shot partitioning either process
each shot boundary independently or proceed sequentially.
The sequential process assumes the last shot boundary is
correctly detected and utilizes the shot length distribution to
adapt the threshold for detecting the next boundary. These
techniques are only locally optimal and suffer from the strong
assumption about the correct detection of the last bound-
ary. Addressing these fundamental issues, in this paper, we
aim to find the global optimal shot partitioning by utiliz-
ing Bayesian principles to model the probability of a par-
ticular video partition being the shot partition. A compu-
tationally efficient algorithm based on Dynamic Program-
ming is then formulated. The experimental results on a
large movie set show that our algorithm performs consis-
tently better than the best adaptive-thresholding technique
commonly used for the task.

1. INTRODUCTION

Video segmentation, often performed by detecting transi-
tions occurring between shots in a digital video stream, is
a fundamental process in automatic video analysis since it
results in disjoint contiguous video segments that can serve
as basic units to be indexed, annotated, and browsed. A
shot in a video is defined as an unbroken sequence of im-
ages of a real or animated world captured between a cam-
era’s “record” and “stop” operations [1]'. Shots are dom-
inantly joined together in the editing stage of video (post)
production with sharp cuts between them to form a com-
plete story sequence and to provide a certain narrative struc-
ture to events portrayed. Occasionally, shots are joined by
gradual visual effects such as fades, dissolves and wipes.
Although numerous techniques have been proposed for
this fundamental problem in video analysis, they are often
threshold-based and exhibit several shortcomings. Early
solutions are poorly formulated and strongly rely on the
empirical observations on a limited data set. Recent ad-
vanced techniques have incorporated prior knowledge about

I'This definition applies for a production shot. A shot in an edited video
sequence is in fact a portion of a production shot, defined by two editing
points.
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the video structure, i.e., shot length distribution, to adapt the
detection threshold according to the time elapsed since the
last shot change. However, they are only locally optimal, as
they proceed sequentially, and rely on a strong assumption
of the correct detection of the last shot change.

In addressing these shortcomings, we propose a tech-
nique for finding the best possible shot partition in a global
sense that takes information from the entire video sequence
in order to decide if a boundary occurs at a particular frame.
This technique is derived from Bayesian principles and val-
idated using a large data set.

2. BACKGROUND

The cut detection problem can be formulated as follows. Let
V = {f1, f, ..., fn} represent the video sequence, where
fi denotes the i-th frame in the sequence. Let S; repre-
sent a segment of continuous frames frame V), ie., S; =
{fsis fsit1y -y fe; }- A partition S = {S1,8s,...,Sn} is
valid for V if and only if S; N S; = 0 for every (i, ), and
S1USs... USy =V, which is equivalentto s; = 1, ey =
n,e; +1 = s;41 forall i € [1, N). For a valid partition
S of V to be a shot segmentation, the following condition
needs to be satisfied: f;11 is not the next frame to f; in a
production shot (i.e., captured from one single camera from
one single operation) if and only if (¢ = ej) for some k.

Most of current techniques concentrate on defining a dis-
criminating function that differentiates between the set of
frame pairs, usually successive, that belong to the same
shots and those spanning across two shots, i.e., (fe;, fs,,,)-
All exploit the following properties:

e Frames surrounding a shot boundary generally dis-
play a significant change in visual content.

e Frames within a shot are very similar.

A discontinuity-based feature vector z; is devised and
computed at every frame transition (f;, f;+1), which should
form two distinctive clusters of inter-shot and intra-shot frame
pairs. A discrimination function F is then learned to detect
these clusters. In practice, z; is one dimensional and results
from applying a distance function (e.g., histogram intersec-
tion) to two feature vectors (e.g., color histogram, edge his-



togram, motion vectors) extracted from f;, f;41, and F is
threshold-based. [2] describe several methods for adapting
the threshold to the activity level in the scene.

Statistical approach. The shot boundary detection prob-
lem can be treated under the statistical framework as the
problem of deciding between two hypotheses.

1. Hypothesis H;: Shot boundary present between two
frames k and k£ + 1 (S).

2. Hypothesis Hy: No shot boundary present between
two frames k£ and k + 1 (S).

Given the distribution ps(z) and pg(z) of discontinuity val-
ues measured across two successive frames for the two hy-
potheses, the optimal threshold can be found using minimum-
cost framework as shown in [3]. [4] use the prior knowledge
about the shot length distribution to adjust the threshold
based on how much time has elapsed since the previously
claimed shot boundary. A similiar approach is adopted in
[5], which incorporates a measure of the strength of the cur-
rent frame being a local peak in z.

3. THE OPTIMAL SHOT PARTITIONING
3.1. Formulation

In this section, we outline a novel approach to the shot
boundary detection problem that aims to detect a global op-
timal solution by searching for the most probable shot par-
titioning. This approach significantly departs from exist-
ing techniques, which either detect shot transitions sequen-
tially or independently of one another. A valid partition S
is treated as a random variable, consisting of the number of
shots IV and the shot boundary locations (s;, ;). The most
probable shot partition is the one that produces the largest
posterior:

P(D[S)P(S)

S= arg max P(S|D) = P(D)

P(DIS)P(S)

(1)

Modelling P(S). This quantity expresses the probabil-

ity of an arbitrary partitioning being a shot partition, consid-

ering no evidence, except segment lengths (I; = e; —s;+1),

are observed or available. Under the assumption that all
shots are independent of one another, we have:
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where p*(.) denotes the pdf. of the shot length. This for-
mulation means the shot length is normalized by its possible
range and satisifies ) ¢ P(S) = 1 and can be adjusted to the
case where there is a set of candidate boundary locations.
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Figure 1: Modelling Shot Length Distribution

Shot length distribution. Previous work has modelled
shot length using various standard distributions, notably Pois-
son [5], Weibull [4, 6], Erlang [4]. However, in our study
of a large and diverse data set, we found that the shot length
from an arbitrary movie is most appropriately modelled by
a Lognormal or Loglogistic distribution. Figure 1 compares
the Weibull fit and Lognormal fit produced by Matlab dis-
tribution fitting tool.

Modelling P(D|S). Let N(s,e) and B(fy, fi+1) de-
note the event that no boundary is present in the segment
{fs, -, fe} and that a boundary is present between frames
ft, fr+1 respectively. After taking into account the shot
length through P(S), we can consider these components as
independentand Sis givenas: S = AN (s1,e1), B(e1, s2), .-,
Blen—1,5n),N(sn,en). In addition, the data for detect-
ing a boundary is based on inter-shot discontinuity, but the
data for detecting a segment with no boundary is based on
intra-shot similarity, and thus they can be considered as in-
dependent components. Therefore, we have:

P(D|S) = P(D(sl,el),D(el,32),...,D(eNfl,sN),D(sN,eNﬂ
N(31761)7B(61752)7-/\/(32762)7“‘76(61\7—175N)7N(SN7€N))
= P(D(s1,€1)|lN(s1,e1)).P(D(e1, s2)|B(e1, s2)). ...

N-1

N
H (si,ei)|N(si,€i)) H P(D

=1

D(ei, si+1)|B(es, si+1))

3)

Computing discontinuity feature. In order to take into
account the spatial arrangement of color in measuring the
difference D(.) between two frames, each frame is divided
into four blocks and the sum of histogram difference of the
four corresponding block pairs is computed. Unlike pre-
vious methods which measure using only two successive
frames around ¢, we model ¢ as a function of frame discon-
tinuity around ¢.

i€(t—w,t—1),j€(t,t+w—1)

where w is the window size. This helps to eliminate some
temporary noises in the discontinuity value within a shot.
The window size should be chosen so that there is no shot
with its length less than the window that is surrounded by
two identical shots, otherwise these boundaries can be missed.



We consider w = 15 (at 25fps) as a safe choice for movie
sequences; however, it can be much larger for other video
genres.

In our implementation, D(e;_1, s;) is represented by 27 ,
whilst D(s;, e;) is represented by the maximum discontinu-
ity value at every frame within the segment, and we call this
intra-segment discontinuity. That is,

D(s;,e;) = max z/ 5
(si,€1) Jmax 2 ®)
Figure 2 shows that the discontinuity values measured
at shot boundaries in the training data set strongly follow a
Gamma distribution, whilst intra-shot discontinuity can be
modelled relativelv well bv a LLognormal distribution.
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Figure 2: Intra-Shot & At-Boundary Discontinuity

3.2. The Search Algorithm
From Equations (1), (2) and (3), we have:

N-1

log(P(D[S)P(S)) o Z P(D(ei, si+1)|B(es, si+1))

+ Z (log P(D(si,€i)|N(si, i) +log P(eilei—1))

(6)

and we need to maximize the RHS to find the optimal solu-
tion. There are a total of 2™ valid partitions of V), therefore
the exhaustive-search for the optimal solution has an expo-
nential complexity. However, if we consider n frames as n
vertices of a directed left-to-right graph, where each node
and edge has a weight assigned as follows:

wn(fi) = log P(D(i,i + 1)|B(i,i + 1))

we(fi, f) = 1og P(D (i, j)IN (i, §)) + log P(eilei—1)’
then the problem of searching for the optimal parititioning
is equivalent to the problem of searching for the longest (in-
cluding the weights of middle vertices) left-to-right path
from vertex fi to vertex f, in this graph, which can be
solved by dynamic programming techniques (DPT). This
is possible due to the property that if { f,, ..., fx, } (k1 =
1,k = n) is the longest path from vertex f; to f, then
{fkys--s fk,_, } is the longest path from vertex f to fi, .

Let P(f;, f;), L(fi, f;) denote the longest path from ver-
tex f; to f; and its length respectively. The following DPT
procedure is guarantee to find the longest path from f; to
fn with a complexity of ¢(n), where O(p(n)) = O(n?).
The procedure recursively computes the longest path from

f1 to fi utilizing information about the longest paths from

fl to f27 "'7fk371-

Algorithm 3.1: FINDTHELONGESTPATH())

local A, j

P(f1, f1) < {f1}
L(f1, f1) <0

for: — 2ton
PO(f1, fi) = {f1, fi}
LY (f1, f;) = we(f1, fi)

for j <—2_t0i— 1
do ! do {P@ (Fu f)) = B(f1, £5) U{fi}
LU (f1, fi) = L(f1, f5) + wn(fj) +we(f, fi)

A(: argj maxj('g()l(i_n H;(j) (f1, fi)
L(f1, fi) =LY (f1, fi
P(f1, fi) =P (f1, fi)

return (P(f1, f,.),L(f1, fn))

3.3 Search Space Reduction

The above DPT procedure has reduced the exponential com-
plexity to O(n?). However, considering that a two-hour
movie has 180,000 frames at 25fps, the number of parti-
tions to be searched is still very large. Fortunately, there are
some simple techniques that can further reduce the search
space to a computationally manageable size.

Breaking down the search range. If we can identify
correctly, via an independent method, that a shot bound-
ary is present between two frames (fx, fi+1), the partition-
ing of the video sequence V can be done, with a potentially
significant reduction in complexity, by applying the above
DPT procedure to two sub-sequences V; = { f1, ..., fx} and
Vo = {fk+1, .- fn} and merging the results.

The basic idea is to find a region Zs in the frame discon-
tinuity feature space Z such that if we decide the hypothesis
‘H, for this region, the probability for false detection P is
almost zero.

Pp = / p(2|S)dz ~ 0. 7
Zs

We observe that false shot boundaries produced by the
conventional thresholding approach (see Section 1) are nor-
mally the result of object and/or camera movements, which
by their nature continue for a number of frames. Thus, a
shot boundary can be reliably identified between two frames
(fi, fi+1) if it coincides with an isolated peak in the dis-
continuity feature curve, characterized by the following two
conditions:

“> T @®)
Zj <E,Vj € [2_W72+W]7J #27



where 77,75 are two discontinuity thresholds and W is a
window size that can be determined quickly from the train-
ing data.

Assuming this technique divides the video sequence V
into m sub-sequences with duration n1,..,n,,, the com-
plexity of the dynamic procedure is now >, ¢(n;) in-
stead of p(n) = (3 ;"1 ng).

Reducing the number of search points. With the DPT
procedure described above, we still need to look through ev-
ery frame location to find the optimal solution. Fortunately,
most frames can be identified as non-boundary frames by a
simple, computationally efficient method also based on the
discontinuity measure. The idea is to find a region Zs in the
frame-discontinuity feature space Z such that if we decide
the hypothesis H; for this region, the probability for miss
detection P, is almost zero.

Py = p(z|S)dz ~ 0. 9)
Z—Zs
By plotting values of two different discontinuity measures,
2% and 22, at boundary locations, we can easily identify a
posible region, characterized by the following constraints:

zl-(l) > T3
{ 2 > T, (10)
(1) + bz(Q) +c>0

az i

The complexity of the DPT procedure when searching
only on potential boundary locations are ¢(h) instead of
»(n), where h denotes the number of potential boundary
locations extracted as above.

4. EXPERIMENTAL RESULTS

Our algorithm is tested on 12 full-length movies, consist-
ing of 18911 shots. It is compared against the best one in
a family of adaptive thresholding methods reported in [2]
using two common metrics: Recall (R) and Precision (P).
This method normalizes the histogram difference between
two frames by the mean and variance of surrounding val-
ues. We use the same metric in Equation 4 and the search
space reduction technique described in Section 3.3. Ta-
ble 1 shows that our algorithm consistently outperforms the
best adaptive thresholding method across all movies. The
improvement in precision and recall is roughly 1% each,
which translates to around 15-20 false positives and 15-20
false negatives in each movie. Considering that we have not
yet adapted discontinuity values to the visual activities sur-
rounding the present frame, the results are very promising.

Results in Table 1 clearly show that the shot partition can
be done much more reliably on drama-based movies such as
American Beauty and Erin Brockovich than on action-based
movies such as The Matrix, The Mummy and Star Wars 1. A
close examination of errors revealed that although our algo-
rithm has managed to eliminate several false positives and
false negatives through the identification of the longest path,
it still has problems dealing with sequences of intense mo-

. Adaptive Proposed
Movie shots R(%) P%) | R(%) P@%)
Star Wars 1 2106 | 93.8  95.6 942 959
The 13th Floor 1340 | 964  96.3 97.2  96.6
The Matrix 2400 | 94.5  96.1 96.0 96.6
Tall Tale 1219 | 956  96.2 97.5  96.7
Chameleon 965 96.0 974 97.2 97.6
12 Monkeys 1309 | 98.0 979 98.6  98.0
The Mummy 1847 | 93.1 94.3 947 952
American Beauty 1068 | 99.7  98.2 99.8 97.9
The Siege 1971 97.0 974 97.8  98.0
Truman Show 1371 | 985 94.1 99.1 95.1
Titanic 1975 | 98.6 970 99.3  97.1
Erin Brockovich 1340 | 99.7 98.8 99.9 99.0

Table 1: Performance Results.

tion, e.g., the racing sequence in Star Wars I and the fight-
ing sequences in The Matrix. In addition, close-up shots of
moving characters and/or objects tend to produce false pos-
itives, as they produce relatively large discontinuity values.

5. SUMMARY AND CONCLUSIONS

In this paper, the video segmentation problem is solved by
searching for the optimal shot partitioning in a global sense.
We showed how the problem can be modelled using Bayesian
principles and the optimal solution can be found by DPT.
We demonstrated the validity of the technique using 12 full-
length movies. Further improvements can be achieved by
building a multivariate model of shot length and visual dy-
namics and adapting the frame-discontinuity measure ac-
cording to the surrounding visual dynamics.
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