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ABSTRACT In this paper, we report our experiments using a real-
world image dataset to examine the effectiveness of 
Isomap, LLE and KPCA. The 1,897-image dataset we 
used consists of 14 image categories. We have used this 
dataset in several settings, both supervised and 
unsupervised, and have found it to be relatively “well 
behaved” (clusters do exist in a lower-dimensional space) 
compared to many other real-world datasets we have 
used.  We did not use a “harder” database because all 
dimension-reduction methods would have failed 
miserably, and we would not be able to observe, identify, 
and explain the limitations of manifold learning. 

 
Tasks of image clustering and classification often deal 
with data of very high dimensions.  To alleviate the 
dimensionality curse, several methods, such as Isomap, 
LLE and KPCA, have recently been proposed and applied 
to learn low-dimensional, non-linear embedded manifolds 
in high-dimensional spaces. Unfortunately, the scenarios 
in which these methods appear to be effective are very 
contrived.  In this work, we empirically examine these 
methods on a realistic but not-so-difficult dataset. We 
discuss the promises and limitations of these dimension-
reduction schemes.  

The rest of this paper is organized into three sections.  
Section 2 briefly summarizes Isomap, LLE, and KPCA.  
Section 3 presents the results of our empirical studies.  
We offer our observations and concluding remarks in 
Section 4. 

 
1. INTRODUCTION 

 
Several dimensionality-reduction algorithms have 
recently been proposed to find nonlinear manifolds 
embedded in a high-dimensional space.  Among the 
proposed methods, Isomap [5], local linear embedding 
(LLE) [1], and kernel PCA (KPCA) [6] have been applied 
to tasks of image clustering [1, 3-6] and image retrieval 
[7,8]. However, the scenarios in which manifold learning 
has been shown to be effective are rather contrived.  For 
instance, the widely used Swiss-roll example [5] is a 
three-dimensional structure on which data are densely 
populated. Several examples of face and object images 
presented in [1-6] change their poses only slightly from 
one image to another, so manifolds can easily be 
discovered.  In all demonstrated scenarios, noise has not 
been considered a factor to seriously challenge manifold 
learning.  

   
2. MANIFOLD LEARNING 

 
Given a set of high-dimensional training 
instances },...,,{ 21 NO xxx= , where . 
Manifold learning algorithms attempt to find an 
embedding set E
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structure formed by O in the original space ℜ is 
preserved in the embedded space ℜ . In the following, 
we briefly review three representative manifold learning 
algorithms, Isomap, LLE, and kernel PCA. 
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Manifold learning faces at least three technical challenges 
[3]. First, training data must be densely populated in the 
intrinsic space where a manifold resides. If data are 
sparsely populated, or if many data instances cannot find 
neighboring points in a local area, then no manifold can 
be learned. Second, the presence of noise in a local area 
may prevent correctly learning the real structure. Third, 
when the dimension of data is high (typically higher than 
30), the dimensionality curse aggravates the above two 
problems.  An exponentially large number of instances 
are required to characterize a manifold in a very high-
dimensional space. The problem of noise magnifies when 
data is sparsely populated, which is inevitable in a high-
dimensional space.  

2.1 ISOMAP 
 
Isomap [5] builds on classical multi-dimensional scaling 
(MDS) by first constructing a squared distance 
matrix . Instead of calculating d using the 

Euclidean distance, Isomap uses the geodesic distance 
between and  along the manifold M where the 

training points reside in the high-dimensional space . 
In [5], the geodesic distance is approximated by finding 
the shortest path in a weighted graph G with edges of 
weight connecting neighboring data points on the 

manifold M.  Next, Isomap applies MDS to the geodesic 
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distance matrix D, embedding the p-dimensional dataset 
O in a d-dimensional Euclidean space ℜ that preserves 
the M’s intrinsic geometry. More specifically, let 

 be the eigenmap of the geodesic distance 

matrix D. Isomap chooses the d largest 
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the final embedding found by ISOMAP using K is 

identical (up to some scaling) to the projections of KPCA 
using the kernel. For LLE, by using the 
kernel

isomap

MIK −= maxλlle , where maxλ is the largest 
eigenvalue of M, the coordinates of the leading 
eigenvectors of KPCA performed on K  yield the LLE 
embedding. 

lle

 
3. EXPERIMENTAL RESULTS 

  
We performed several experiments to examine if 
preprocessing data with Isomap, LLE, or KPCA can 
improve clustering performance. We employed k-means 
as our clustering algorithm.  To conduct our experiments, 
we used a 14-category 1,897-image dataset, with each 
image being represented by a 144-dimensional feature 
vector [9]. We first applied k-means to the raw data to 
record the percentage of data that can be clustered into 
their correct categories.  We obtained clustering accuracy 
of 87.36% (or 0.8736).  This is the yardstick performance 
to which Isomap, LLE, and KPCA were compared. 

2.2 LLE 
 
The LLE algorithm [1] seeks an embedding to preserve 
the local manifold geometry of the neighborhood of each 
training point. It first constructs a sparse weight matrix W 
with its i,jth component w representing the construction 

ability of x on , where ∑ , and equals 0 

if is out of the k-nearest neighbors of x . Next, LLE 

makes an eigendecomposition on the matrix 
 and generates the embedding 

using M’s bottom d+1 eigenvectors , corresponding 

to the d+1 smallest eigenvalues 

M

. LLE discards the 

bottom  with the zero . Therefore, y  is equal to 

. v

 
3.1. Clustering Accuracy 
 

 
2.3. KPCA 
 
The KPCA algorithm [6] seeks a non-linear dimension 
reduction in a high-dimensional space. KPCA first maps 
data into a high-dimensional Hilbert kernel space as 

φ  using a positive semi-definite kernel K.  Next, 
KPCA solves an igen problem on a centered kernel 
matrix where 

. Finally, the is calculated as 
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Figure 1. Isomap Clustering Accuracy. 
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Figure 1 presents the clustering accuracy using Isomap 
with different values of k (number of nearest neighbors) 
and d (intrinsic data dimension, on the x-axis).  When d is 
reduced from 144 to between 60 and 100 and k is set 
between 20 and 40, preprocessing data with Isomap 
shows improvement in clustering accuracy.  However, the 
improvement is less than 1% even in the best case, a very 
insignificant amount. 

Although KPCA does not obviously consider the local 
manifold geometry in the algorithm, it can be related to 
Isomap and LLE in a kernel framework. For example, [4] 
argues that by taking the following “kernel”    

 Figure 2 presents the results when using LLE. The best 
result was obtained when d was set to 2 and k between 40 
and 80.  Again, the accuracy improvement is insignificant. 
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Figure 4. 3D Manifold Discovered by LLE. 
 Figure 2. Clustering accuracy with LLE (d = 2). 
3.3. Limitations  
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Unfortunately, several limitations hinder manifold 
learning from being practical.  In addition to the high 
data-density requirement, sensitivity to noise, and curse of 
dimensionality that we discussed in Section 1, we 
observed during our empirical study one major chicken-
and-egg problem:  without knowing the structure of the 
data, turning parameters (such as d and k for LLE) is 
merely shooting in the dark. When conducting our 
experiments, since we had the labels of the images, we 
could measure the effectiveness of the learned manifolds 
and identify the best parameter combinations.  However, 
in a realistic setting when little or no ground-truth is given, 
there is no way of knowing what parameter setting might 
yield improved results. More specifically, let us use 
Figures 1-3 to explain. Without prior knowledge of the 
image categories, we would not have been able to 
evaluate clustering accuracy.  Thus, we cannot predict 
whether a parameter combination would be helpful or 
counter-productive.   

Figure 3. Clustering Accuracy using KPCA and LLE. 
 
Figure 3 shows the clustering accuracy after using KPCA 
for manifold learning.  The light-color curve shows the 
KPCA clustering accuracy on different d settings.  When 
d is 4 or 5, KPCA slightly outperforms the yardstick 
accuracy.  KPCA and LLE appear to obtain similar 
intrinsic dimensions (2-5), whereas Isomap works better 
when d is between 20 and 40. 

 
At first glance, it would seem that combining supervised 
learning with manifold learning might alleviate this 
parameter-setting problem. Our experimental results, 
however, do not show that this path can work effectively. 
We randomly set aside 50% of the data as training data. 
We intended to learn the best parameter setting(s) using 
the training data, and then apply that setting(s) to the 
entire dataset to learn manifolds.  We conducted this 
training experiment for both Isomap and LLE with four 
sets of randomly sampled datasets.  Unfortunately, from 
the four different training datasets, we obtained vastly 
different parameter settings. Figure 5 plots the distribution 
of the “good” settings that can yield improved clustering 
accuracy for Isomap. Notice that the “good” parameters 
obtained with different training datasets are all quite 
different; moreover, the parameters learned do not 

 
3.2. Promising Potential 
 
Our experimental results show that manifold learning can 
be helpful in two ways.  First, it can (although in a very 
insignificant way on our dataset) improve data quality for 
supervised and unsupervised learning tasks. Second, if the 
discovered intrinsic structure is in low dimensions, one 
can visualize the data and gain useful insights.  Figure 4 
plots the image-dataset in a 3-d space after LLE has been 
applied. From the plot, we can identify “trouble-spot” 
classes or clusters, and this information can be useful for 
designing new features to improve cluster separation.  



correlate with the best parameters for the entire dataset, as 
shown in Figure 1. Similarly, Figure 6 plots the same poor 
parameter pattern we obtained from the LLE training 
experiment. We believe that since manifold learning is 
very sensitive to data distribution, even slightly different 
sets of data can lead to very different manifold structures.  
Both the high training variance and the inability to 
generalize the training result to unseen data render this 
semi-supervised path unusable or unhelpful. 

 
Figure 5. Parameter Settings for ISOMAP. 

 
Figure 6. Parameter Settings for LLE. 

 
 

 
4. CONCLUSIONS 

 
In this paper, we have explained how we performed an 
empirical study on the representative manifold learning 
methods Isomap, LLE, and KPCA. Our results show that 

when manifold do exist and we have an oracle to provide 
us with good parameter settings (k and d), then manifold 
learning can improve clustering accuracy somewhat. 
However, we concur with [3] that when a dataset is noisy 
and high dimensional, manifold learning is generally 
ineffective. Furthermore, we found a practical chicken-
and-egg problem -- that it is impossible to obtain good 
parameter settings for manifold learning without prior 
knowledge of the data characteristics.  In addition, we are 
not fully convinced that manifolds learned on a training 
dataset can be generalized to unseen data. Despite some 
recent claims of success in image retrieval (e.g., [7]), we 
remain skeptical about the practical use of manifold 
learning at our current level of knowledge.  In a recent 
IPAM meeting [10], which two authors of this paper and 
the inventors of Isomap and LLE attended, the consensus 
of the presenters and participants was that manifold 
learning remains a work-in-progress area for research. 
 

5. REFERENCES 
 

[1] L. K. Saul and S. T. Roweis, “Think Globally, Fit Locally: 
Unsupervised Learning of Low Dimensional Manifolds,” Journal 
of Machine Learning Research, vol. 4, 2003. 
[2] Viren Jain and Lawrence L. Saul, “Exploratory analysis and 
visualization of speech and music by locally linear embedding,” 
Proc. ICASS, vol. 3, 2004. 
[3] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. L. 
Roux, and M. Quimet, “Out-of Sample Extensions for LLE, 
Isomap, MDS, Eigenmaps, and Spectral Clustering,” Neural 
Information and Processing System (NIPS), 2004. 
[4] J. Ham, D. D. Lee, S. Mika, and B. Scholkopf, “A Kernel 
View of Dimensionality Reduction of Manifolds,” International 
Conference on Machine Learning (ICML), 2004. 
[5] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A Global 
Geometric Framework for Nonlinear Dimensionality 
Reduction,” Science, 290(5500): 2319-2323, 2000. 
[6] B. Scholkopf, A. J. Smola, and K. R. M u& ller, “Nonlinear 
Component Analysis as a Kernel Eigenvalue Problem,” Neural 
Computation (NIPS), vol. 10, 1998. 

&

[7] X. He, “Incremental Semi-supervised Subspace Learning for 
Image Retrieval,” ACM Multimedia, pp. 2-8, 2004. 
[8] X. He, W.-Y. Mar, H.-J. Zhang, “Learning an Image 
Manifold for Retrieval,”  ACM Multimedia Conf., 2004. 
[9] S. Tong and E. Chang, Support Vector Machine Active 
Learning for Image Retrieval, ACM Multimedia, 2001. 
[10] IPAM Workshop on Multiscale Geometry and Analysis in 
High Dimensions, October, 2000. 

 


	Index
	ICME 2005

	Conference Info
	Welcome Messages
	Venue Access
	Committees
	Sponsors
	Tutorials

	Sessions
	Wednesday, 6 July, 2005
	WedAmOR1-Action recognition
	WedAmOR2-Video conference applications
	WedAmOR3-Video indexing
	WedAmOR4-Concealment &amp; information recovery
	WedAmPO1-Posters on Human machine interface, interactio ...
	WedAmOR5-Face detection &amp; tracking
	WedAmOR6-Video conferencing &amp; interaction
	WedAmOR7-Audio &amp; video segmentation
	WedAmOR8-Security
	WedPmOR1-Video streaming
	WedPmOR2-Music
	WedPmOR3-H.264
	WedPmSS1-E-meetings &amp; e-learning
	WedPmPO1-Posters on Content analysis and compressed dom ...
	WedPmOR4-Wireless multimedia streaming
	WedPmOR5-Audio processing &amp; analysis
	WedPmOR6-Authentication, protection &amp; DRM
	WedPmSS2-E-meetings &amp; e-learning -cntd-

	Thursday, 7 July, 2005
	ThuAmOR1-3D
	ThuAmOR2-Video classification
	ThuAmOR3-Watermarking 1
	ThuAmSS1-Emotion detection
	ThuAmNT1-Expo
	ThuAmOR4-Multidimensional signal processing
	ThuAmOR5-Feature extraction
	ThuAmOR6-Coding
	ThuAmSS2-Emotion detection -cntd-
	ThuPmOR1-Home video analysis
	ThuPmOR2-Interactive retrieval &amp; annotation
	ThuPmOR3-Multimedia hardware and software design
	ThuPmSS1-Enterprise streaming
	ThuPmNT1-Expo -cntd-
	ThuPmOR4-Faces
	ThuPmOR5-Audio event detection
	ThuPmOR6-Multimedia systems analysis
	ThuPmOR7-Media conversion
	ThuPmPS2-Keynote Gopal Pingali, IBM Research, &quot;Ele ...

	Friday, 8 July, 2005
	FriAmOR1-Annotation &amp; ontologies
	FriAmOR2-Interfaces for multimedia
	FriAmOR3-Hardware
	FriAmOR4-Motion estimation
	FriAmPO1-Posters on Architectures, security, systems &a ...
	FriAmOR5-Machine learning
	FriAmOR6-Multimedia traffic management
	FriAmOR7-CBIR
	FriAmOR8-Compression
	FriPmOR1-Speech processing &amp; analysis
	FriPmSS1-Sports
	FriPmOR2-Hypermedia &amp; internet
	FriPmOR3-Transcoding
	FriPmPO1-Posters on Applications, authoring &amp; editi ...
	FriPmOR4-Multimedia communication &amp; networking
	FriPmOR5-Watermarking 2
	FriPmSS2-Sports -cntd-
	FriPmOR6-Shape retrieval


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	1 SIGNAL PROCESSING FOR MEDIA INTEGRATION
	1-CDOM Compressed Domain Processing
	1-CONV Media Conversion
	1-CPRS Media Compression
	1-ENCR Watermarking, Encryption and Data Hiding
	1-FILT Media Filtering and Enhancement
	1-JMEP Joint Media Processing
	1-PROC 3-D Processing
	1-SYNC Synchronization
	1-TCOD Transcoding of Compressed Multimedia Objects
	2 COMPONENTS AND TECHNOLOGIES FOR MULTIMEDIA SYSTEMS
	2-ALAR Algorithms/Architectures
	2-CIRC Low-Power Digital and Analog Circuits for Multim ...
	2-DISP Display Technology for Multimedia
	2-EXTN Signal and Data Processors for Multimedia Extens ...
	2-HDSO Hardware/Software Codesign
	2-PARA Parallel Architectures and Design Techniques
	2-PRES 3-D Presentation
	3 HUMAN-MACHINE INTERFACE AND INTERACTION
	3-AGNT Intelligent and Life-Like Agents
	3-CAMM Context-aware Multimedia
	3-CONT Presentation of Content in Multimedia Sessions
	3-DIAL Dialogue and Interactive Systems
	3-INTF User Interfaces
	3-MODA Multimodal Interaction
	3-QUAL Perceptual Quality and Human Factors
	3-VRAR Virtual Reality and Augmented Reality
	4 MULTIMEDIA CONTENT MANAGEMENT AND DELIVERY
	4-ANSY Content Analysis and Synthesis
	4-AUTH Authoring and Editing
	4-COMO Multimedia Content Modeling
	4-DESC Multimedia Content Descriptors
	4-DLIB Digital Libraries
	4-FEAT Feature Extraction and Representation
	4-KEEP Multimedia Indexing, Searching, Retrieving, Quer ...
	4-KNOW Content Recognition and Understanding
	4-MINI Multimedia Mining
	4-MMDB Multimedia Databases
	4-PERS Personalized Multimedia
	4-SEGM Image and Video Segmentation for Interactive Ser ...
	4-STRY Video Summaries and Storyboards
	5 MULTIMEDIA COMMUNICATION AND NETWORKING
	5-APDM Multimedia Authentication, Content Protection an ...
	5-BEEP Multimedia Traffic Management
	5-HIDE Error Concealment and Information Recovery
	5-QOSV Quality of Service
	5-SEND Transport Protocols
	5-STRM Multimedia Streaming
	5-WRLS Wireless Multimedia Communication
	6 SYSTEM INTEGRATION
	6-MMMR Multimedia Middleware
	6-OPTI System Optimization and Packaging
	6-SYSS Operating System Support for Multimedia
	6-WORK System Performance
	7 APPLICATIONS
	7-AMBI Ambient Intelligence
	7-CONF Videoconferencing and Collaboration Environment
	7-CONS Consumer Electronics and Entertainment
	7-EDUC Education and e-learning
	7-SECR Security
	7-STAN Multimedia Standards
	7-WEBS WWW, Hypermedia and Internet, Internet II

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Mei-Chen Yeh
	I-Hsiang Lee
	Gang Wu
	Yi Wu
	Edward Chang



